6.
Prazeres A, Carvalho F, Rivas J
. Cheese whey management: a review. J Environ Manage. 2012; 110:48-68.
DOI: 10.1016/j.jenvman.2012.05.018.
View
7.
Schultz N, Chang L, Hauck A, Reuss M, Syldatk C
. Microbial production of single-cell protein from deproteinized whey concentrates. Appl Microbiol Biotechnol. 2005; 69(5):515-20.
DOI: 10.1007/s00253-005-0012-z.
View
8.
Venetsaneas N, Antonopoulou G, Stamatelatou K, Kornaros M, Lyberatos G
. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour Technol. 2009; 100(15):3713-7.
DOI: 10.1016/j.biortech.2009.01.025.
View
9.
Yadav J, Yan S, Pilli S, Kumar L, Tyagi R, Surampalli R
. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol Adv. 2015; 33(6 Pt 1):756-74.
DOI: 10.1016/j.biotechadv.2015.07.002.
View
10.
Zhou X, Hua X, Huang L, Xu Y
. Bio-utilization of cheese manufacturing wastes (cheese whey powder) for bioethanol and specific product (galactonic acid) production via a two-step bioprocess. Bioresour Technol. 2018; 272:70-76.
DOI: 10.1016/j.biortech.2018.10.001.
View
11.
Fukuhara H
. Kluyveromyces lactis- a retrospective. FEMS Yeast Res. 2006; 6(3):323-4.
DOI: 10.1111/j.1567-1364.2005.00012.x.
View
12.
Sampaio F, de Faria J, da Silva M, Pinheiro de Souza Oliveira R, Converti A
. Cheese whey permeate fermentation by : a combined approach to wastewater treatment and bioethanol production. Environ Technol. 2019; 41(24):3210-3218.
DOI: 10.1080/09593330.2019.1604813.
View
13.
Guimaraes P, Teixeira J, Domingues L
. Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv. 2010; 28(3):375-84.
DOI: 10.1016/j.biotechadv.2010.02.002.
View
14.
Cote A, Brown W, Cameron D, van Walsum G
. Hydrolysis of lactose in whey permeate for subsequent fermentation to ethanol. J Dairy Sci. 2004; 87(6):1608-20.
DOI: 10.3168/jds.S0022-0302(04)73315-9.
View
15.
Lima P, Gazoni I, de Carvalho A, Bresolin D, Cavalheiro D, de Oliveira D
. β-galactosidase from Kluyveromyces lactis in genipin-activated chitosan: An investigation on immobilization, stability, and application in diluted UHT milk. Food Chem. 2021; 349:129050.
DOI: 10.1016/j.foodchem.2021.129050.
View
16.
Yang S, Silva E
. Novel products and new technologies for use of a familiar carbohydrate, milk lactose. J Dairy Sci. 1995; 78(11):2541-62.
DOI: 10.3168/jds.S0022-0302(95)76884-9.
View
17.
Taraboulsi Jr F, Tomotani E, Vitolo M
. Multienzymatic sucrose conversion into fructose and gluconic acid through fed-batch and membrane-continuous processes. Appl Biochem Biotechnol. 2011; 165(7-8):1708-24.
DOI: 10.1007/s12010-011-9389-6.
View
18.
Zhang H, Liu G, Zhang J, Bao J
. Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis. Bioresour Technol. 2016; 219:123-131.
DOI: 10.1016/j.biortech.2016.07.068.
View
19.
Pucci E, Buffo M, Del Bianco Sousa M, Tardioli P, Badino A
. An innovative multi-enzymatic system for gluconic acid production from starch using Aspergillus niger whole-cells. Enzyme Microb Technol. 2023; 171:110309.
DOI: 10.1016/j.enzmictec.2023.110309.
View
20.
Michiels J, Truffin D, Majdeddin M, Van Poucke M, Van Liefferinge E, Van Noten N
. Gluconic acid improves performance of newly weaned piglets associated with alterations in gut microbiome and fermentation. Porcine Health Manag. 2023; 9(1):10.
PMC: 10074721.
DOI: 10.1186/s40813-023-00305-1.
View