6.
Marathe A, Zhu Y, Chaturvedi V, Chaturvedi S
. Utility of CHROMagar™ Candida Plus for presumptive identification of Candida auris from surveillance samples. Mycopathologia. 2022; 187(5-6):527-534.
PMC: 9647746.
DOI: 10.1007/s11046-022-00656-3.
View
7.
Yang D, Paterna N, Senetra A, Casey K, Trieu P, Caputo G
. Synergistic interactions of ionic liquids and antimicrobials improve drug efficacy. iScience. 2020; 24(1):101853.
PMC: 7753145.
DOI: 10.1016/j.isci.2020.101853.
View
8.
Iyer K, Robbins N, Cowen L
. Flow Cytometric Measurement of Efflux in Candida Species. Curr Protoc Microbiol. 2020; 59(1):e121.
PMC: 8515609.
DOI: 10.1002/cpmc.121.
View
9.
Fang Z, Zheng X, Li L, Qi J, Wu W, Lu Y
. Ionic Liquids: Emerging Antimicrobial Agents. Pharm Res. 2022; 39(10):2391-2404.
DOI: 10.1007/s11095-022-03336-5.
View
10.
Akhavan M, Foroughifar N, Pasdar H, Bekhradnia A
. Green Synthesis, Biological Activity Evaluation, and Molecular Docking Studies of Aryl Alkylidene 2, 4-thiazolidinedione and Rhodanine Derivatives as Antimicrobial Agents. Comb Chem High Throughput Screen. 2019; 22(10):716-727.
DOI: 10.2174/1386207322666191127103122.
View
11.
Fu J, Blaylock M, Wickes C, Welte W, Mehrtash A, Wiederhold N
. Development of a Candida glabrata dominant nutritional transformation marker utilizing the Aspergillus nidulans acetamidase gene (amdS). FEMS Yeast Res. 2016; 16(3).
PMC: 5975954.
DOI: 10.1093/femsyr/fow023.
View
12.
Florio W, Becherini S, DAndrea F, Lupetti A, Chiappe C, Guazzelli L
. Comparative evaluation of antimicrobial activity of different types of ionic liquids. Mater Sci Eng C Mater Biol Appl. 2019; 104:109907.
DOI: 10.1016/j.msec.2019.109907.
View
13.
Jung P, Mischo C, Gunaratnam G, Spengler C, Becker S, Hube B
. adhesion to central venous catheters: Impact of blood plasma-driven germ tube formation and pathogen-derived adhesins. Virulence. 2020; 11(1):1453-1465.
PMC: 7595616.
DOI: 10.1080/21505594.2020.1836902.
View
14.
Kuczak M, Musial M, Malarz K, Rurka P, Zorebski E, Musiol R
. Anticancer potential and through study of the cytotoxicity mechanism of ionic liquids that are based on the trifluoromethanesulfonate and bis(trifluoromethylsulfonyl)imide anions. J Hazard Mater. 2022; 427:128160.
DOI: 10.1016/j.jhazmat.2021.128160.
View
15.
Paul S, Dadwal R, Singh S, Shaw D, Chakrabarti A, Rudramurthy S
. Rapid detection of ERG11 polymorphism associated azole resistance in Candida tropicalis. PLoS One. 2021; 16(1):e0245160.
PMC: 7806177.
DOI: 10.1371/journal.pone.0245160.
View
16.
Wang D, An N, Yang Y, Yang X, Fan Y, Feng J
. Candida tropicalis distribution and drug resistance is correlated with ERG11 and UPC2 expression. Antimicrob Resist Infect Control. 2021; 10(1):54.
PMC: 7958445.
DOI: 10.1186/s13756-021-00890-2.
View
17.
El-Kholy M, Helaly G, El Ghazzawi E, El-Sawaf G, Shawky S
. Analysis of CDR1 and MDR1 Gene Expression and ERG11 Substitutions in Clinical Candida tropicalis Isolates from Alexandria, Egypt. Braz J Microbiol. 2023; 54(4):2609-2615.
PMC: 10689625.
DOI: 10.1007/s42770-023-01106-y.
View
18.
Chaves F, Garnacho-Montero J, Del Pozo J, Bouza E, Capdevila J, de Cueto M
. Diagnosis and treatment of catheter-related bloodstream infection: Clinical guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology and (SEIMC) and the Spanish Society of Spanish Society of Intensive and Critical Care.... Med Intensiva (Engl Ed). 2018; 42(1):5-36.
DOI: 10.1016/j.medin.2017.09.012.
View
19.
Jeon S, Shin J, Lim H, Choi M, Byun S, Lee D
. Disk Diffusion Susceptibility Testing for the Rapid Detection of Fluconazole Resistance in Isolates. Ann Lab Med. 2021; 41(6):559-567.
PMC: 8203430.
DOI: 10.3343/alm.2021.41.6.559.
View
20.
Espinel-Ingroff A, Fothergill A, Peter J, Rinaldi M, Walsh T
. Testing conditions for determination of minimum fungicidal concentrations of new and established antifungal agents for Aspergillus spp.: NCCLS collaborative study. J Clin Microbiol. 2002; 40(9):3204-8.
PMC: 130733.
DOI: 10.1128/JCM.40.9.3204-3208.2002.
View