» Articles » PMID: 38154913

Supervised Machine Learning Model to Predict Mortality in Patients Undergoing Venovenous Extracorporeal Membrane Oxygenation from a Nationwide Multicentre Registry

Overview
Date 2023 Dec 28
PMID 38154913
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Existing models have performed poorly when predicting mortality for patients undergoing venovenous extracorporeal membrane oxygenation (VV-ECMO). This study aimed to develop and validate a machine learning (ML)-based prediction model to predict 90-day mortality in patients undergoing VV-ECMO.

Methods: This study included 368 patients with acute respiratory failure undergoing VV-ECMO from 16 tertiary hospitals across South Korea between 2012 and 2015. The primary outcome was the 90-day mortality after ECMO initiation. The inputs included all available features (n=51) and those from the electronic health record (EHR) systems without preprocessing (n=40). The discriminatory strengths of ML models were evaluated in both internal and external validation sets. The models were compared with conventional models, such as respiratory ECMO survival prediction (RESP) and predicting death for severe acute respiratory distress syndrome on VV-ECMO (PRESERVE).

Results: Extreme gradient boosting (XGB) (areas under the receiver operating characteristic curve, AUROC 0.82, 95% CI (0.73 to 0.89)) and light gradient boosting (AUROC 0.81 (95% CI 0.71 to 0.88)) models achieved the highest performance using EHR's and all other available features. The developed models had higher AUROCs (95% CI 0.76 to 0.82) than those of RESP (AUROC 0.66 (95% CI 0.56 to 0.76)) and PRESERVE (AUROC 0.71 (95% CI 0.61 to 0.81)). Additionally, we achieved an AUROC (0.75) for 90-day mortality in external validation in the case of the XGB model, which was higher than that of RESP (0.70) and PRESERVE (0.67) in the same validation dataset.

Conclusions: ML prediction models outperformed previous mortality risk models. This model may be used to identify patients who are unlikely to benefit from VV-ECMO therapy during patient selection.

References
1.
Schmidt M, Zogheib E, Roze H, Repesse X, Lebreton G, Luyt C . The PRESERVE mortality risk score and analysis of long-term outcomes after extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. Intensive Care Med. 2013; 39(10):1704-13. PMC: 7094902. DOI: 10.1007/s00134-013-3037-2. View

2.
Enger T, Philipp A, Videm V, Lubnow M, Wahba A, Fischer M . Prediction of mortality in adult patients with severe acute lung failure receiving veno-venous extracorporeal membrane oxygenation: a prospective observational study. Crit Care. 2014; 18(2):R67. PMC: 4057201. DOI: 10.1186/cc13824. View

3.
Harnisch L, Moerer O . Contraindications to the Initiation of Veno-Venous ECMO for Severe Acute Respiratory Failure in Adults: A Systematic Review and Practical Approach Based on the Current Literature. Membranes (Basel). 2021; 11(8). PMC: 8400963. DOI: 10.3390/membranes11080584. View

4.
Bellani G, Laffey J, Pham T, Fan E, Brochard L, Esteban A . Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA. 2016; 315(8):788-800. DOI: 10.1001/jama.2016.0291. View

5.
Combes A, Hajage D, Capellier G, Demoule A, Lavoue S, Guervilly C . Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N Engl J Med. 2018; 378(21):1965-1975. DOI: 10.1056/NEJMoa1800385. View