6.
Xi X, Tang W, Wu D, Shen C, Ji W, Li J
. All-Carbon Solution-Gated Transistor with Low Operating Voltages for Highly Selective and Stable Dopamine Sensing. ACS Sens. 2023; 8(3):1211-1219.
DOI: 10.1021/acssensors.2c02608.
View
7.
Cho Y, Park J, Lee K, Lee T, Luo Z, Kim T
. Recent advances in nanomaterial-modified electrical platforms for the detection of dopamine in living cells. Nano Converg. 2020; 7(1):40.
PMC: 7755953.
DOI: 10.1186/s40580-020-00250-7.
View
8.
Liu Y, Chen P, Zheng S, Xing Y, Huang C
. Novel fluorescent sensor using molecularly imprinted silica microsphere-coated CdSe@CdS quantum dots and its application in the detection of 2,4,6-trichlorophenol from environmental water samples. Luminescence. 2019; 34(7):680-688.
DOI: 10.1002/bio.3653.
View
9.
Yang L, Fan S, Deng G, Li Y, Ran X, Zhao H
. Bridged β-cyclodextrin-functionalized MWCNT with higher supramolecular recognition capability: the simultaneous electrochemical determination of three phenols. Biosens Bioelectron. 2015; 68:617-625.
DOI: 10.1016/j.bios.2015.01.059.
View
10.
Chen Y, Huang W, Chen K, Zhang T, Wang Y, Wang J
. A novel electrochemical sensor based on core-shell-structured metal-organic frameworks: The outstanding analytical performance towards chlorogenic acid. Talanta. 2019; 196:85-91.
DOI: 10.1016/j.talanta.2018.12.033.
View
11.
Jiang J, Ding D, Wang J, Lin X, Diao G
. Three-dimensional nitrogen-doped graphene-based metal-free electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, uric acid, and acetaminophen. Analyst. 2020; 146(3):964-970.
DOI: 10.1039/d0an01912g.
View
12.
Chen Y, Sun X, Biswas S, Xie Y, Wang Y, Hu X
. Integrating polythiophene derivates to PCN-222(Fe) for electrocatalytic sensing of L-dopa. Biosens Bioelectron. 2019; 141:111470.
DOI: 10.1016/j.bios.2019.111470.
View
13.
Li J, Shen H, Yu S, Zhang G, Ren C, Hu X
. Synthesis of a manganese dioxide nanorod-anchored graphene oxide composite for highly sensitive electrochemical sensing of dopamine. Analyst. 2020; 145(9):3283-3288.
DOI: 10.1039/d0an00348d.
View
14.
Zhang Y, Tong Y, Li X, Guo S, Zhang H, Chen X
. Pebax Mixed-Matrix Membrane with Highly Dispersed ZIF-8@CNTs to Enhance CO/N Separation. ACS Omega. 2021; 6(29):18566-18575.
PMC: 8319931.
DOI: 10.1021/acsomega.1c00493.
View
15.
Kumari G, Jayaramulu K, Maji T, Narayana C
. Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8: a Raman study. J Phys Chem A. 2013; 117(43):11006-12.
DOI: 10.1021/jp407792a.
View
16.
Yakemseva M, Dierking I, Kapernaum N, Usoltseva N, Giesselmann F
. Dispersions of multi-wall carbon nanotubes in ferroelectric liquid crystals. Eur Phys J E Soft Matter. 2014; 37(2):7.
DOI: 10.1140/epje/i2014-14007-4.
View
17.
Wang Y, Zhao W, Qi Z, Zhang L, Peng Y
. Phosphate removal by ZIF-8@MWCNT hybrids in presence of effluent organic matter: Adsorbent structure, wastewater quality, and DFT analysis. Sci Total Environ. 2020; 745:141054.
DOI: 10.1016/j.scitotenv.2020.141054.
View
18.
Biswas S, Chen Y, Xie Y, Sun X, Wang Y
. Ultrasmall Au(0) Inserted Hollow PCN-222 MOF for The High-Sensitive Detection of Estradiol. Anal Chem. 2020; 92(6):4566-4572.
DOI: 10.1021/acs.analchem.9b05841.
View
19.
Wang Y, Wang L, Chen H, Hu X, Ma S
. Fabrication of Highly Sensitive and Stable Hydroxylamine Electrochemical Sensor Based on Gold Nanoparticles and Metal-Metalloporphyrin Framework Modified Electrode. ACS Appl Mater Interfaces. 2016; 8(28):18173-81.
DOI: 10.1021/acsami.6b04819.
View
20.
Liu X, Fang Y, Zhu D, Wang J, Wu Y, Wang T
. Hollow structure molecularly imprinted ratiometric fluorescence sensor for the selective and sensitive detection of dopamine. Analyst. 2023; 148(12):2844-2854.
DOI: 10.1039/d3an00528c.
View