6.
Risco D, Bravo M, Martinez R, Torres A, Goncalves P, Cuesta J
. Vaccination Against Porcine Circovirus-2 Reduces Severity of Tuberculosis in Wild Boar. Ecohealth. 2018; 15(2):388-395.
DOI: 10.1007/s10393-018-1321-x.
View
7.
Fernandez-de-Mera I, Vicente J, Gortazar C, Hofle U, Fierro Y
. Efficacy of an in-feed preparation of ivermectin against helminths in the European wild boar. Parasitol Res. 2003; 92(2):133-6.
DOI: 10.1007/s00436-003-0976-5.
View
8.
Risco D, Martinez R, Bravo M, Fernandez Llario P, Cerrato R, Garcia-Jimenez W
. Nasal shedding of in wild boar is related to generalised tuberculosis and concomitant infections. Vet Rec. 2019; 185(20):629.
DOI: 10.1136/vr.105511.
View
9.
Reis A, Ramos B, Pereira A, Cunha M
. The hard numbers of tuberculosis epidemiology in wildlife: A meta-regression and systematic review. Transbound Emerg Dis. 2020; 68(6):3257-3276.
DOI: 10.1111/tbed.13948.
View
10.
Babu S, Nutman T
. Helminth-Tuberculosis Co-infection: An Immunologic Perspective. Trends Immunol. 2016; 37(9):597-607.
PMC: 5003706.
DOI: 10.1016/j.it.2016.07.005.
View
11.
Zhang H, Liu M, Fan W, Sun S, Fan X
. The impact of complex in the environment on one health approach. Front Public Health. 2022; 10:994745.
PMC: 9489838.
DOI: 10.3389/fpubh.2022.994745.
View
12.
Chianini F, Majo N, Segales J, Dominguez J, Domingo M
. Immunohistochemical characterisation of PCV2 associate lesions in lymphoid and non-lymphoid tissues of pigs with natural postweaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunopathol. 2003; 94(1-2):63-75.
PMC: 7119727.
DOI: 10.1016/s0165-2427(03)00079-5.
View
13.
Martinez L, Verma R, Croda J, Horsburgh Jr C, Walter K, Degner N
. Detection, survival and infectious potential of in the environment: a review of the evidence and epidemiological implications. Eur Respir J. 2019; 53(6).
PMC: 6753378.
DOI: 10.1183/13993003.02302-2018.
View
14.
Acevedo P, Prieto M, Quiros P, Merediz I, de Juan L, Infantes-Lorenzo J
. Tuberculosis Epidemiology and Badger () Spatial Ecology in a Hot-Spot Area in Atlantic Spain. Pathogens. 2019; 8(4).
PMC: 6963265.
DOI: 10.3390/pathogens8040292.
View
15.
Ferreras-Colino E, Moreno I, Arnal M, Balseiro A, Acevedo P, Dominguez M
. Is serology a realistic approach for monitoring red deer tuberculosis in the field?. Prev Vet Med. 2022; 202:105612.
DOI: 10.1016/j.prevetmed.2022.105612.
View
16.
Diez-Delgado I, Sevilla I, Garrido J, Romero B, Geijo M, Dominguez L
. Tuberculosis vaccination sequence effect on protection in wild boar. Comp Immunol Microbiol Infect Dis. 2019; 66:101329.
DOI: 10.1016/j.cimid.2019.101329.
View
17.
Gortazar C, Diez-Delgado I, Barasona J, Vicente J, de la Fuente J, Boadella M
. The Wild Side of Disease Control at the Wildlife-Livestock-Human Interface: A Review. Front Vet Sci. 2015; 1:27.
PMC: 4668863.
DOI: 10.3389/fvets.2014.00027.
View
18.
Buddle B, Vordermeier H, Chambers M, de Klerk-Lorist L
. Efficacy and Safety of BCG Vaccine for Control of Tuberculosis in Domestic Livestock and Wildlife. Front Vet Sci. 2018; 5:259.
PMC: 6214331.
DOI: 10.3389/fvets.2018.00259.
View
19.
Risco D, Salguero F, Cerrato R, Gutierrez-Merino J, Lanham-New S, Barquero-Perez O
. Association between vitamin D supplementation and severity of tuberculosis in wild boar and red deer. Res Vet Sci. 2016; 108:116-9.
DOI: 10.1016/j.rvsc.2016.08.003.
View
20.
Rosell C, Segales J, Plana-Duran J, Balasch M, Rodriguez-Arrioja G, Kennedy S
. Pathological, immunohistochemical, and in-situ hybridization studies of natural cases of postweaning multisystemic wasting syndrome (PMWS) in pigs. J Comp Pathol. 1999; 120(1):59-78.
DOI: 10.1053/jcpa.1998.0258.
View