6.
Williams P, Qazi S, Agarwal R, Velaphi S, Bielicki J, Nambiar S
. Antibiotics needed to treat multidrug-resistant infections in neonates. Bull World Health Organ. 2022; 100(12):797-807.
PMC: 9706347.
DOI: 10.2471/BLT.22.288623.
View
7.
. Enteral lactoferrin supplementation for very preterm infants: a randomised placebo-controlled trial. Lancet. 2019; 393(10170):423-433.
PMC: 6356450.
DOI: 10.1016/S0140-6736(18)32221-9.
View
8.
Laxminarayan R, Matsoso P, Pant S, Brower C, Rottingen J, Klugman K
. Access to effective antimicrobials: a worldwide challenge. Lancet. 2015; 387(10014):168-75.
DOI: 10.1016/S0140-6736(15)00474-2.
View
9.
Folgori L, Bielicki J, Heath P, Sharland M
. Antimicrobial-resistant Gram-negative infections in neonates: burden of disease and challenges in treatment. Curr Opin Infect Dis. 2017; 30(3):281-288.
DOI: 10.1097/QCO.0000000000000371.
View
10.
Gershon A, Lindenauer P, Wilson K, Rose L, Walkey A, Sadatsafavi M
. Informing Healthcare Decisions with Observational Research Assessing Causal Effect. An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med. 2021; 203(1):14-23.
PMC: 7781125.
DOI: 10.1164/rccm.202010-3943ST.
View
11.
Hernan M, Robins J
. Estimating causal effects from epidemiological data. J Epidemiol Community Health. 2006; 60(7):578-86.
PMC: 2652882.
DOI: 10.1136/jech.2004.029496.
View
12.
Schunemann H, Tugwell P, Reeves B, Akl E, Santesso N, Spencer F
. Non-randomized studies as a source of complementary, sequential or replacement evidence for randomized controlled trials in systematic reviews on the effects of interventions. Res Synth Methods. 2015; 4(1):49-62.
DOI: 10.1002/jrsm.1078.
View
13.
Okomo U, Akpalu E, Le Doare K, Roca A, Cousens S, Jarde A
. Aetiology of invasive bacterial infection and antimicrobial resistance in neonates in sub-Saharan Africa: a systematic review and meta-analysis in line with the STROBE-NI reporting guidelines. Lancet Infect Dis. 2019; 19(11):1219-1234.
DOI: 10.1016/S1473-3099(19)30414-1.
View
14.
Hernan M, Wang W, Leaf D
. Target Trial Emulation: A Framework for Causal Inference From Observational Data. JAMA. 2022; 328(24):2446-2447.
DOI: 10.1001/jama.2022.21383.
View
15.
Wen S, Ezure Y, Rolley L, Spurling G, Lau C, Riaz S
. Gram-negative neonatal sepsis in low- and lower-middle-income countries and WHO empirical antibiotic recommendations: A systematic review and meta-analysis. PLoS Med. 2021; 18(9):e1003787.
PMC: 8478175.
DOI: 10.1371/journal.pmed.1003787.
View
16.
Hayes R, Hartnett J, Semova G, Murray C, Murphy K, Carroll L
. Neonatal sepsis definitions from randomised clinical trials. Pediatr Res. 2021; 93(5):1141-1148.
PMC: 10132965.
DOI: 10.1038/s41390-021-01749-3.
View
17.
Hernan M
. Methods of Public Health Research - Strengthening Causal Inference from Observational Data. N Engl J Med. 2021; 385(15):1345-1348.
DOI: 10.1056/NEJMp2113319.
View
18.
Downie L, Armiento R, Subhi R, Kelly J, Clifford V, Duke T
. Community-acquired neonatal and infant sepsis in developing countries: efficacy of WHO's currently recommended antibiotics--systematic review and meta-analysis. Arch Dis Child. 2012; 98(2):146-54.
DOI: 10.1136/archdischild-2012-302033.
View
19.
Seymour C, Liu V, Iwashyna T, Brunkhorst F, Rea T, Scherag A
. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315(8):762-74.
PMC: 5433435.
DOI: 10.1001/jama.2016.0288.
View
20.
Sands K, Carvalho M, Portal E, Thomson K, Dyer C, Akpulu C
. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat Microbiol. 2021; 6(4):512-523.
PMC: 8007471.
DOI: 10.1038/s41564-021-00870-7.
View