» Articles » PMID: 38107599

Unmasking Critical Illness: Using Machine Learning and Biomarkers to See What Lies Beneath

Overview
Specialty Pediatrics
Date 2023 Dec 18
PMID 38107599
Authors
Affiliations
Soon will be listed here.
References
1.
Maslove D, Tang B, Shankar-Hari M, Lawler P, Angus D, Baillie J . Redefining critical illness. Nat Med. 2022; 28(6):1141-1148. DOI: 10.1038/s41591-022-01843-x. View

2.
Knox D, Lanspa M, Kuttler K, Brewer S, Brown S . Phenotypic clusters within sepsis-associated multiple organ dysfunction syndrome. Intensive Care Med. 2015; 41(5):814-22. PMC: 4607311. DOI: 10.1007/s00134-015-3764-7. View

3.
Sinha P, Furfaro D, Cummings M, Abrams D, Delucchi K, Maddali M . Latent Class Analysis Reveals COVID-19-related Acute Respiratory Distress Syndrome Subgroups with Differential Responses to Corticosteroids. Am J Respir Crit Care Med. 2021; 204(11):1274-1285. PMC: 8786071. DOI: 10.1164/rccm.202105-1302OC. View

4.
Calfee C, Delucchi K, Parsons P, Thompson B, Ware L, Matthay M . Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014; 2(8):611-20. PMC: 4154544. DOI: 10.1016/S2213-2600(14)70097-9. View

5.
Reddy K, Calfee C, McAuley D . Acute Respiratory Distress Syndrome Subphenotypes beyond the Syndrome: A Step toward Treatable Traits?. Am J Respir Crit Care Med. 2021; 203(12):1449-1451. PMC: 8483225. DOI: 10.1164/rccm.202101-0218ED. View