Unmasking Critical Illness: Using Machine Learning and Biomarkers to See What Lies Beneath
Overview
Overview
Authors
Affiliations
Affiliations
Soon will be listed here.
References
1.
Maslove D, Tang B, Shankar-Hari M, Lawler P, Angus D, Baillie J
. Redefining critical illness. Nat Med. 2022; 28(6):1141-1148.
DOI: 10.1038/s41591-022-01843-x.
View
2.
Knox D, Lanspa M, Kuttler K, Brewer S, Brown S
. Phenotypic clusters within sepsis-associated multiple organ dysfunction syndrome. Intensive Care Med. 2015; 41(5):814-22.
PMC: 4607311.
DOI: 10.1007/s00134-015-3764-7.
View
3.
Sinha P, Furfaro D, Cummings M, Abrams D, Delucchi K, Maddali M
. Latent Class Analysis Reveals COVID-19-related Acute Respiratory Distress Syndrome Subgroups with Differential Responses to Corticosteroids. Am J Respir Crit Care Med. 2021; 204(11):1274-1285.
PMC: 8786071.
DOI: 10.1164/rccm.202105-1302OC.
View
4.
Calfee C, Delucchi K, Parsons P, Thompson B, Ware L, Matthay M
. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014; 2(8):611-20.
PMC: 4154544.
DOI: 10.1016/S2213-2600(14)70097-9.
View
5.
Reddy K, Calfee C, McAuley D
. Acute Respiratory Distress Syndrome Subphenotypes beyond the Syndrome: A Step toward Treatable Traits?. Am J Respir Crit Care Med. 2021; 203(12):1449-1451.
PMC: 8483225.
DOI: 10.1164/rccm.202101-0218ED.
View