» Articles » PMID: 38102412

Ratcheting Synthesis

Overview
Journal Nat Rev Chem
Publisher Springer Nature
Specialty Chemistry
Date 2023 Dec 15
PMID 38102412
Authors
Affiliations
Soon will be listed here.
Abstract

Synthetic chemistry has traditionally relied on reactions between reactants of high chemical potential and transformations that proceed energetically downhill to either a global or local minimum (thermodynamic or kinetic control). Catalysts can be used to manipulate kinetic control, lowering activation energies to influence reaction outcomes. However, such chemistry is still constrained by the shape of one-dimensional reaction coordinates. Coupling synthesis to an orthogonal energy input can allow ratcheting of chemical reaction outcomes, reminiscent of the ways that molecular machines ratchet random thermal motion to bias conformational dynamics. This fundamentally distinct approach to synthesis allows multi-dimensional potential energy surfaces to be navigated, enabling reaction outcomes that cannot be achieved under conventional kinetic or thermodynamic control. In this Review, we discuss how ratcheted synthesis is ubiquitous throughout biology and consider how chemists might harness ratchet mechanisms to accelerate catalysis, drive chemical reactions uphill and programme complex reaction sequences.

Citing Articles

Computational Analysis of the Kinetic Requirements for Coupled Reaction Systems.

Incarbone S, De Gioia L Molecules. 2025; 30(4).

PMID: 40005221 PMC: 11858731. DOI: 10.3390/molecules30040911.


The Possible Crystallization Process in the Origin of Bacteria, Archaea, Viruses, and Mobile Elements.

Yoshimura A, Seki M Biology (Basel). 2025; 14(1.

PMID: 39857234 PMC: 11763024. DOI: 10.3390/biology14010003.


Catalytic resonance theory: the catalytic mechanics of programmable ratchets.

Murphy M, Gathmann S, Getman R, Grabow L, Abdelrahman O, Dauenhauer P Chem Sci. 2024; .

PMID: 39129768 PMC: 11307141. DOI: 10.1039/d4sc04069d.


The sugar cube: Network control and emergence in stereoediting reactions.

Carder H, Occhialini G, Bistoni G, Riplinger C, Kwan E, Wendlandt A Science. 2024; 385(6707):456-463.

PMID: 39052778 PMC: 11774262. DOI: 10.1126/science.adp2447.


Photoswitchable Imines Drive Dynamic Covalent Systems to Nonequilibrium Steady States.

Wu J, Greenfield J J Am Chem Soc. 2024; 146(30):20720-20727.

PMID: 39025474 PMC: 11295185. DOI: 10.1021/jacs.4c03817.

References
1.
Ragazzon G, Prins L . Energy consumption in chemical fuel-driven self-assembly. Nat Nanotechnol. 2018; 13(10):882-889. DOI: 10.1038/s41565-018-0250-8. View

2.
Astumian R . Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. Phys Chem Chem Phys. 2007; 9(37):5067-83. DOI: 10.1039/b708995c. View

3.
Feng Y, Ovalle M, Seale J, Lee C, Kim D, Astumian R . Molecular Pumps and Motors. J Am Chem Soc. 2021; 143(15):5569-5591. DOI: 10.1021/jacs.0c13388. View

4.
Borsley S, Leigh D, Roberts B . Chemical fuels for molecular machinery. Nat Chem. 2022; 14(7):728-738. DOI: 10.1038/s41557-022-00970-9. View

5.
Zhang L, Qiu Y, Liu W, Chen H, Shen D, Song B . An electric molecular motor. Nature. 2023; 613(7943):280-286. PMC: 9834048. DOI: 10.1038/s41586-022-05421-6. View