» Articles » PMID: 38089818

Characterization of an Aspartate Aminotransferase Encoded by YPO0623 with Frequent Nonsense Mutations in

Abstract

, the causative agent of plague, is a genetically monomorphic bacterial pathogen that evolved from approximately 7,400 years ago. We observed unusually frequent mutations in YPO0623, mostly resulting in protein translation termination, which implies a strong natural selection. These mutations were found in all phylogenetic lineages of , and there was no apparent pattern in the spatial distribution of the mutant strains. Based on these findings, we aimed to investigate the biological function of YPO0623 and the reasons for its frequent mutation in . Our and assays revealed that the deletion of YPO0623 enhanced the growth of in nutrient-rich environments and led to increased tolerance to heat and cold shocks. With RNA-seq analysis, we also discovered that the deletion of YPO0623 resulted in the upregulation of genes associated with the type VI secretion system (T6SS) at 26°C, which probably plays a crucial role in the response of to environment fluctuations. Furthermore, bioinformatic analysis showed that YPO0623 has high homology with a PLP-dependent aspartate aminotransferase in , and the enzyme activity assays confirmed its aspartate aminotransferase activity. However, the enzyme activity of YPO0623 was significantly lower than that in other bacteria. These observations provide some insights into the underlying reasons for the high-frequency nonsense mutations in YPO0623, and further investigations are needed to determine the exact mechanism.

References
1.
Chain P, Carniel E, Larimer F, Lamerdin J, Stoutland P, Regala W . Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A. 2004; 101(38):13826-31. PMC: 518763. DOI: 10.1073/pnas.0404012101. View

2.
Yagi T, Toyosato M, Soda K . Crystalline aspartate aminotransferase from Pseudomonas striata. FEBS Lett. 1976; 61(1):34-7. DOI: 10.1016/0014-5793(76)80165-2. View

3.
Guo X, Yan H, Yang W, Yin Z, Vadyvaloo V, Zhou D . A frameshift in alters canonical Rcs signalling to preserve flea-mammal plague transmission cycles. Elife. 2023; 12. PMC: 10191623. DOI: 10.7554/eLife.83946. View

4.
Cui Y, Yu C, Yan Y, Li D, Li Y, Jombart T . Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc Natl Acad Sci U S A. 2012; 110(2):577-82. PMC: 3545753. DOI: 10.1073/pnas.1205750110. View

5.
Yang X, Pan J, Wang Y, Shen X . Type VI Secretion Systems Present New Insights on Pathogenic . Front Cell Infect Microbiol. 2018; 8:260. PMC: 6079546. DOI: 10.3389/fcimb.2018.00260. View