6.
Bruno C, OBrien C, Bryant S, Mejaes J, Estrin D, Pizzano C
. pMAT: An open-source software suite for the analysis of fiber photometry data. Pharmacol Biochem Behav. 2021; 201:173093.
PMC: 7853640.
DOI: 10.1016/j.pbb.2020.173093.
View
7.
Hoshino S, Takahashi R, Mieno K, Tamatsu Y, Azechi H, Ide K
. The Reconfigurable Maze Provides Flexible, Scalable, Reproducible, and Repeatable Tests. iScience. 2020; 23(1):100787.
PMC: 6992939.
DOI: 10.1016/j.isci.2019.100787.
View
8.
Takeuchi T, Duszkiewicz A, Sonneborn A, Spooner P, Yamasaki M, Watanabe M
. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature. 2016; 537(7620):357-362.
PMC: 5161591.
DOI: 10.1038/nature19325.
View
9.
Tsetsenis T, Badyna J, Wilson J, Zhang X, Krizman E, Subramaniyan M
. Midbrain dopaminergic innervation of the hippocampus is sufficient to modulate formation of aversive memories. Proc Natl Acad Sci U S A. 2021; 118(40).
PMC: 8501778.
DOI: 10.1073/pnas.2111069118.
View
10.
Covey D, Cheer J
. Accumbal Dopamine Release Tracks the Expectation of Dopamine Neuron-Mediated Reinforcement. Cell Rep. 2019; 27(2):481-490.e3.
PMC: 6481661.
DOI: 10.1016/j.celrep.2019.03.055.
View
11.
Stuber G, Hnasko T, Britt J, Edwards R, Bonci A
. Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci. 2010; 30(24):8229-33.
PMC: 2918390.
DOI: 10.1523/JNEUROSCI.1754-10.2010.
View
12.
Sawatani F, Tamatsu Y, Ide K, Azechi H, Takahashi S
. Utilizing a Reconfigurable Maze System to Enhance the Reproducibility of Spatial Navigation Tests in Rodents. J Vis Exp. 2022; (190).
DOI: 10.3791/64754.
View
13.
DeGroot S, Zhao-Shea R, Chung L, Klenowski P, Sun F, Molas S
. Midbrain Dopamine Controls Anxiety-like Behavior by Engaging Unique Interpeduncular Nucleus Microcircuitry. Biol Psychiatry. 2020; 88(11):855-866.
PMC: 8043246.
DOI: 10.1016/j.biopsych.2020.06.018.
View
14.
Ilango A, Kesner A, Keller K, Stuber G, Bonci A, Ikemoto S
. Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward and aversion. J Neurosci. 2014; 34(3):817-22.
PMC: 3891961.
DOI: 10.1523/JNEUROSCI.1703-13.2014.
View
15.
Lisman J, Grace A
. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron. 2005; 46(5):703-13.
DOI: 10.1016/j.neuron.2005.05.002.
View
16.
Sun F, Zhou J, Dai B, Qian T, Zeng J, Li X
. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat Methods. 2020; 17(11):1156-1166.
PMC: 7648260.
DOI: 10.1038/s41592-020-00981-9.
View
17.
Kravitz A, Freeze B, Parker P, Kay K, Thwin M, Deisseroth K
. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010; 466(7306):622-6.
PMC: 3552484.
DOI: 10.1038/nature09159.
View
18.
Zhuang X, Masson J, Gingrich J, Rayport S, Hen R
. Targeted gene expression in dopamine and serotonin neurons of the mouse brain. J Neurosci Methods. 2005; 143(1):27-32.
DOI: 10.1016/j.jneumeth.2004.09.020.
View
19.
Tsetsenis T, Broussard J, Dani J
. Dopaminergic regulation of hippocampal plasticity, learning, and memory. Front Behav Neurosci. 2023; 16:1092420.
PMC: 9911454.
DOI: 10.3389/fnbeh.2022.1092420.
View
20.
Ioanas H, Saab B, Rudin M
. Whole-brain opto-fMRI map of mouse VTA dopaminergic activation reflects structural projections with small but significant deviations. Transl Psychiatry. 2022; 12(1):60.
PMC: 8844000.
DOI: 10.1038/s41398-022-01812-5.
View