» Articles » PMID: 38071313

The BrainLat Project, a Multimodal Neuroimaging Dataset of Neurodegeneration from Underrepresented Backgrounds

Abstract

The Latin American Brain Health Institute (BrainLat) has released a unique multimodal neuroimaging dataset of 780 participants from Latin American. The dataset includes 530 patients with neurodegenerative diseases such as Alzheimer's disease (AD), behavioral variant frontotemporal dementia (bvFTD), multiple sclerosis (MS), Parkinson's disease (PD), and 250 healthy controls (HCs). This dataset (62.7 ± 9.5 years, age range 21-89 years) was collected through a multicentric effort across five Latin American countries to address the need for affordable, scalable, and available biomarkers in regions with larger inequities. The BrainLat is the first regional collection of clinical and cognitive assessments, anatomical magnetic resonance imaging (MRI), resting-state functional MRI (fMRI), diffusion-weighted MRI (DWI), and high density resting-state electroencephalography (EEG) in dementia patients. In addition, it includes demographic information about harmonized recruitment and assessment protocols. The dataset is publicly available to encourage further research and development of tools and health applications for neurodegeneration based on multimodal neuroimaging, promoting the assessment of regional variability and inclusion of underrepresented participants in research.

Citing Articles

Explainable Artificial Intelligence in Neuroimaging of Alzheimer's Disease.

Taiyeb Khosroshahi M, Morsali S, Gharakhanlou S, Motamedi A, Hassanbaghlou S, Vahedi H Diagnostics (Basel). 2025; 15(5).

PMID: 40075859 PMC: 11899653. DOI: 10.3390/diagnostics15050612.


Deep learning-based classification of dementia using image representation of subcortical signals.

Ranjan S, Tripathi A, Shende H, Badal R, Kumar A, Yadav P BMC Med Inform Decis Mak. 2025; 25(1):113.

PMID: 40050853 PMC: 11887350. DOI: 10.1186/s12911-025-02924-w.


Altered spatiotemporal brain dynamics of interoception in behavioural-variant frontotemporal dementia.

Hazelton J, Della Bella G, Barttfeld P, Dottori M, Gonzalez-Gomez R, Migeot J EBioMedicine. 2025; 113:105614.

PMID: 39987747 PMC: 11894334. DOI: 10.1016/j.ebiom.2025.105614.


WAND: A multi-modal dataset integrating advanced MRI, MEG, and TMS for multi-scale brain analysis.

McNabb C, Driver I, Hyde V, Hughes G, Chandler H, Thomas H Sci Data. 2025; 12(1):220.

PMID: 39915473 PMC: 11803114. DOI: 10.1038/s41597-024-04154-7.


Need to adapt Alzheimer's disease criteria in Latin America.

Custodio N, Allegri R, Lopera F, Caramelli P Alzheimers Dement. 2024; 20(11):8206-8208.

PMID: 39369281 PMC: 11567807. DOI: 10.1002/alz.14289.


References
1.
Cruzat J, Herzog R, Prado P, Sanz-Perl Y, Gonzalez-Gomez R, Moguilner S . Temporal Irreversibility of Large-Scale Brain Dynamics in Alzheimer's Disease. J Neurosci. 2023; 43(9):1643-1656. PMC: 10008060. DOI: 10.1523/JNEUROSCI.1312-22.2022. View

2.
Hughes C, Berg L, Danziger W, COBEN L, Martin R . A new clinical scale for the staging of dementia. Br J Psychiatry. 1982; 140:566-72. DOI: 10.1192/bjp.140.6.566. View

3.
Goetz C, Poewe W, Rascol O, Sampaio C, Stebbins G, Counsell C . Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord. 2004; 19(9):1020-8. DOI: 10.1002/mds.20213. View

4.
McKhann G, Knopman D, Chertkow H, Hyman B, Jack Jr C, Kawas C . The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011; 7(3):263-9. PMC: 3312024. DOI: 10.1016/j.jalz.2011.03.005. View

5.
Moguilner S, Whelan R, Adams H, Valcour V, Tagliazucchi E, Ibanez A . Visual deep learning of unprocessed neuroimaging characterises dementia subtypes and generalises across non-stereotypic samples. EBioMedicine. 2023; 90:104540. PMC: 10066533. DOI: 10.1016/j.ebiom.2023.104540. View