Enhancement of Radiation Sensitivity by Cathepsin L Suppression in Colon Carcinoma Cells
Overview
Chemistry
Molecular Biology
Authors
Affiliations
Cancer is one of the main causes of death globally. Radiotherapy/Radiation therapy (RT) is one of the most common and effective cancer treatments. RT utilizes high-energy radiation to damage the DNA of cancer cells, leading to their death or impairing their proliferation. However, radiation resistance remains a significant challenge in cancer treatment, limiting its efficacy. Emerging evidence suggests that cathepsin L (cath L) contributes to radiation resistance through multiple mechanisms. In this study, we investigated the role of cath L, a member of the cysteine cathepsins (caths) in radiation sensitivity, and the potential reduction in radiation resistance by using the specific cath L inhibitor (Z-FY(tBu)DMK) or by knocking out cath L with CRISPR/Cas9 in colon carcinoma cells (caco-2). Cells were treated with different doses of radiation (2, 4, 6, 8, and 10), dose rate 3 Gy/min. In addition, the study conducted protein expression analysis by western blot and immunofluorescence assay, cytotoxicity MTT, and apoptosis assays. The results demonstrated that cath L was upregulated in response to radiation treatment, compared to non-irradiated cells. In addition, inhibiting or knocking out cath L led to increased radiosensitivity in contrast to the negative control group. This may indicate a reduced ability of cancer cells to recover from radiation-induced DNA damage, resulting in enhanced cell death. These findings highlight the possibility of targeting cath L as a therapeutic strategy to enhance the effectiveness of RT. Further studies are needed to elucidate the underlying molecular mechanisms and to assess the translational implications of cath L knockout in clinical settings. Ultimately, these findings may contribute to the development of novel treatment approaches for improving outcomes of RT in cancer patients.
Aufy M, Abd-Elkareem M, Mustafic M, Abdel-Maksoud M, Hakamy A, Baresova V PLoS One. 2024; 19(12):e0311760.
PMID: 39705219 PMC: 11661583. DOI: 10.1371/journal.pone.0311760.
Proteolytic Activation of the Epithelial Sodium Channel (ENaC): Its Mechanisms and Implications.
Aufy M, Hussein A, Stojanovic T, Studenik C, Kotob M Int J Mol Sci. 2023; 24(24).
PMID: 38139392 PMC: 10743461. DOI: 10.3390/ijms242417563.