6.
Janik E, Niemcewicz M, Podogrocki M, Ceremuga M, Gorniak L, Stela M
. The Existing Methods and Novel Approaches in Mycotoxins' Detection. Molecules. 2021; 26(13).
PMC: 8271920.
DOI: 10.3390/molecules26133981.
View
7.
Garutti M, Nevola G, Mazzeo R, Cucciniello L, Totaro F, Bertuzzi C
. The Impact of Cereal Grain Composition on the Health and Disease Outcomes. Front Nutr. 2022; 9:888974.
PMC: 9196906.
DOI: 10.3389/fnut.2022.888974.
View
8.
Freitag S, Sulyok M, Logan N, Elliott C, Krska R
. The potential and applicability of infrared spectroscopic methods for the rapid screening and routine analysis of mycotoxins in food crops. Compr Rev Food Sci Food Saf. 2022; 21(6):5199-5224.
DOI: 10.1111/1541-4337.13054.
View
9.
Levasseur-Garcia C
. Updated Overview of Infrared Spectroscopy Methods for Detecting Mycotoxins on Cereals (Corn, Wheat, and Barley). Toxins (Basel). 2018; 10(1).
PMC: 5793125.
DOI: 10.3390/toxins10010038.
View
10.
Agriopoulou S, Stamatelopoulou E, Varzakas T
. Advances in Analysis and Detection of Major Mycotoxins in Foods. Foods. 2020; 9(4).
PMC: 7230321.
DOI: 10.3390/foods9040518.
View
11.
Williams P
. The benefits of breakfast cereal consumption: a systematic review of the evidence base. Adv Nutr. 2014; 5(5):636S-673S.
PMC: 4188247.
DOI: 10.3945/an.114.006247.
View
12.
Garg M, Sharma A, Vats S, Tiwari V, Kumari A, Mishra V
. Vitamins in Cereals: A Critical Review of Content, Health Effects, Processing Losses, Bioaccessibility, Fortification, and Biofortification Strategies for Their Improvement. Front Nutr. 2021; 8:586815.
PMC: 8241910.
DOI: 10.3389/fnut.2021.586815.
View
13.
Tyska D, Mallmann A, Gressler L, Mallmann C
. Near-infrared spectroscopy as a tool for rapid screening of deoxynivalenol in wheat flour and its applicability in the industry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2021; 38(11):1958-1968.
DOI: 10.1080/19440049.2021.1954699.
View
14.
Lippolis V, Cervellieri S, Damascelli A, Pascale M, Di Gioia A, Longobardi F
. Rapid prediction of deoxynivalenol contamination in wheat bran by MOS-based electronic nose and characterization of the relevant pattern of volatile compounds. J Sci Food Agric. 2018; 98(13):4955-4962.
DOI: 10.1002/jsfa.9028.
View
15.
Kushiro M
. Effects of milling and cooking processes on the deoxynivalenol content in wheat. Int J Mol Sci. 2009; 9(11):2127-2145.
PMC: 2635633.
DOI: 10.3390/ijms9112127.
View
16.
Zhou S, Xu L, Kuang H, Xiao J, Xu C
. Immunoassays for rapid mycotoxin detection: state of the art. Analyst. 2020; 145(22):7088-7102.
DOI: 10.1039/d0an01408g.
View
17.
De Girolamo A, Lippolis V, Nordkvist E, Visconti A
. Rapid and non-invasive analysis of deoxynivalenol in durum and common wheat by Fourier-Transform Near Infrared (FT-NIR) spectroscopy. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2009; 26(6):907-17.
DOI: 10.1080/02652030902788946.
View
18.
Li F, Xie J, Wang S, Wang Y, Xu C
. Direct qualitative and quantitative determination methodology for massive screening of DON in wheat flour based on multi-molecular infrared spectroscopy (MM-IR) with 2T-2DCOS. Talanta. 2021; 234:122653.
DOI: 10.1016/j.talanta.2021.122653.
View
19.
. Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts Scientific Opinion of the Panel on Contaminants in the Food chain. EFSA J. 2023; 6(7):653.
PMC: 10193653.
DOI: 10.2903/j.efsa.2008.653.
View
20.
Cheli F, Ottoboni M, Fumagalli F, Mazzoleni S, Ferrari L, Pinotti L
. E-Nose Technology for Mycotoxin Detection in Feed: Ready for a Real Context in Field Application or Still an Emerging Technology?. Toxins (Basel). 2023; 15(2).
PMC: 9958648.
DOI: 10.3390/toxins15020146.
View