» Articles » PMID: 38055342

Crosstalk Between Glucagon-like Peptide 1 and Gut Microbiota in Metabolic Diseases

Overview
Journal mBio
Specialty Microbiology
Date 2023 Dec 6
PMID 38055342
Authors
Affiliations
Soon will be listed here.
Abstract

Gut microbiota exert influence on gastrointestinal mucosal permeability, bile acid metabolism, short-chain fatty acid synthesis, dietary fiber fermentation, and farnesoid X receptor/Takeda G protein-coupled receptor 5 (TGR5) signal transduction. The incretin glucagon-like peptide 1 (GLP-1) is mainly produced by L cells in the gut and regulates postprandial blood glucose. Changes in gut microbiota composition and function have been observed in obesity and type 2 diabetes (T2D). Meanwhile, the function and rhythm of GLP-1 have also been affected in subjects with obesity or T2D. Therefore, it is necessary to discuss the link between the gut microbiome and GLP-1. In this review, we describe the interaction between GLP-1 and the gut microbiota in metabolic diseases. On the one hand, gut microbiota metabolites stimulate GLP-1 secretion, and gut microbiota affect GLP-1 function and rhythm. On the other hand, the mechanism of action of GLP-1 on gut microbiota involves the inflammatory response. Additionally, we discuss the effects and mechanism of various interventions, such as prebiotics, probiotics, antidiabetic drugs, and bariatric surgery, on the crosstalk between gut microbiota and GLP-1. Finally, we stress that gut microbiota can be used as a target for metabolic diseases, and the clinical application of GLP-1 receptor agonists should be individualized.

Citing Articles

Efficacy and safety of GLP-1 agonists in Parkinson's disease: a systematic review and meta-analysis of randomized controlled trials.

Messak M, Abdelmageed A, Senbel A, Khattab Y, Mandour Y, Shaker O Naunyn Schmiedebergs Arch Pharmacol. 2025; .

PMID: 40067438 DOI: 10.1007/s00210-025-03932-3.


Alteration of Gastrointestinal Function and the Ameliorative Effects of Polysaccharides in Tail Suspension Rats.

Zang P, Chen P, Chen J, Sun J, Lan H, Dong H Nutrients. 2025; 17(4).

PMID: 40005052 PMC: 11858084. DOI: 10.3390/nu17040724.


The gut-brain-metabolic axis: exploring the role of microbiota in insulin resistance and cognitive function.

Abildinova G, Benberin V, Vochshenkova T, Afshar A, Mussin N, Kaliyev A Front Microbiol. 2024; 15:1463958.

PMID: 39659426 PMC: 11628546. DOI: 10.3389/fmicb.2024.1463958.


Targeting the Gut Microbiota for Prevention and Management of Type 2 Diabetes.

Donati Zeppa S, Gervasi M, Bartolacci A, Ferrini F, Patti A, Sestili P Nutrients. 2024; 16(22).

PMID: 39599740 PMC: 11597803. DOI: 10.3390/nu16223951.


Associations Among Estrogens, the Gut Microbiome and Osteoporosis.

Kverka M, Stepan J Curr Osteoporos Rep. 2024; 23(1):2.

PMID: 39585466 PMC: 11588883. DOI: 10.1007/s11914-024-00896-w.


References
1.
Kato S, Sato T, Fujita H, Kawatani M, Yamada Y . Effects of GLP-1 receptor agonist on changes in the gut bacterium and the underlying mechanisms. Sci Rep. 2021; 11(1):9167. PMC: 8080802. DOI: 10.1038/s41598-021-88612-x. View

2.
Lebrun L, Lenaerts K, Kiers D, Pais de Barros J, Le Guern N, Plesnik J . Enteroendocrine L Cells Sense LPS after Gut Barrier Injury to Enhance GLP-1 Secretion. Cell Rep. 2017; 21(5):1160-1168. DOI: 10.1016/j.celrep.2017.10.008. View

3.
Lin S, Yang X, Long Y, Zhong H, Wang P, Yuan P . Dietary supplementation with modified gut microbiota, bile acid profile and glucose homoeostasis in weaning piglets. Br J Nutr. 2020; 124(8):797-808. DOI: 10.1017/S0007114520001774. View

4.
Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F . Featured article: Structure moderation of gut microbiota in liraglutide-treated diabetic male rats. Exp Biol Med (Maywood). 2017; 243(1):34-44. PMC: 5788162. DOI: 10.1177/1535370217743765. View

5.
Chen L, Fan Z, Wang H, Wen D, Zhang S . Effect of polysaccharides from adlay seed on anti-diabetic and gut microbiota. Food Funct. 2019; 10(7):4372-4380. DOI: 10.1039/c9fo00406h. View