» Articles » PMID: 38047913

Avoiding False Discoveries in Single-cell RNA-seq by Revisiting the First Alzheimer's Disease Dataset

Overview
Journal Elife
Specialty Biology
Date 2023 Dec 4
PMID 38047913
Authors
Affiliations
Soon will be listed here.
Abstract

Mathys et al. conducted the first single-nucleus RNA-seq (snRNA-seq) study of Alzheimer's disease (AD) (Mathys et al., 2019). With bulk RNA-seq, changes in gene expression across cell types can be lost, potentially masking the differentially expressed genes (DEGs) across different cell types. Through the use of single-cell techniques, the authors benefitted from increased resolution with the potential to uncover cell type-specific DEGs in AD for the first time. However, there were limitations in both their data processing and quality control and their differential expression analysis. Here, we correct these issues and use best-practice approaches to snRNA-seq differential expression, resulting in 549 times fewer DEGs at a false discovery rate of 0.05. Thus, this study highlights the impact of quality control and differential analysis methods on the discovery of disease-associated genes and aims to refocus the AD research field away from spuriously identified genes.

Citing Articles

A Reproducibility Focused Meta-Analysis Method for Single-Cell Transcriptomic Case-Control Studies Uncovers Robust Differentially Expressed Genes.

Nakatsuka N, Adler D, Jiang L, Hartman A, Cheng E, Klann E bioRxiv. 2024; .

PMID: 39463993 PMC: 11507907. DOI: 10.1101/2024.10.15.618577.


Loss of immune cell identity with age inferred from large atlases of single cell transcriptomes.

Connolly E, Pan T, Aluru M, Chockalingam S, Dhere V, Gibson G Aging Cell. 2024; 23(12):e14306.

PMID: 39143696 PMC: 11634704. DOI: 10.1111/acel.14306.


Transcriptional analysis of primary ciliary dyskinesia airway cells reveals a dedicated cilia glutathione pathway.

Koenitzer J, Gupta D, Twan W, Xu H, Hadas N, Hawkins F JCI Insight. 2024; 9(17).

PMID: 39042459 PMC: 11385084. DOI: 10.1172/jci.insight.180198.


Single-nucleus sequencing reveals enriched expression of genetic risk factors in extratelencephalic neurons sensitive to degeneration in ALS.

Limone F, Mordes D, Couto A, Joseph B, Mitchell J, Therrien M Nat Aging. 2024; 4(7):984-997.

PMID: 38907103 PMC: 11257952. DOI: 10.1038/s43587-024-00640-0.


SpotSweeper: spatially-aware quality control for spatial transcriptomics.

Totty M, Hicks S, Guo B bioRxiv. 2024; .

PMID: 38895212 PMC: 11185656. DOI: 10.1101/2024.06.06.597765.


References
1.
Wakhloo D, Scharkowski F, Curto Y, Butt U, Bansal V, Steixner-Kumar A . Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin. Nat Commun. 2020; 11(1):1313. PMC: 7062779. DOI: 10.1038/s41467-020-15041-1. View

2.
Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young J . Single-cell transcriptomic analysis of Alzheimer's disease. Nature. 2019; 570(7761):332-337. PMC: 6865822. DOI: 10.1038/s41586-019-1195-2. View

3.
Hao Y, Hao S, Andersen-Nissen E, Mauck 3rd W, Zheng S, Butler A . Integrated analysis of multimodal single-cell data. Cell. 2021; 184(13):3573-3587.e29. PMC: 8238499. DOI: 10.1016/j.cell.2021.04.048. View

4.
Amezquita R, Lun A, Becht E, Carey V, Carpp L, Geistlinger L . Orchestrating single-cell analysis with Bioconductor. Nat Methods. 2019; 17(2):137-145. PMC: 7358058. DOI: 10.1038/s41592-019-0654-x. View

5.
Tran H, Ang K, Chevrier M, Zhang X, Lee N, Goh M . A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 2020; 21(1):12. PMC: 6964114. DOI: 10.1186/s13059-019-1850-9. View