6.
Nonnenmacher Y, Hiller K
. Biochemistry of proinflammatory macrophage activation. Cell Mol Life Sci. 2018; 75(12):2093-2109.
PMC: 5948278.
DOI: 10.1007/s00018-018-2784-1.
View
7.
Teran G, Li H, Catrina S, Liu R, Brighenti S, Zheng X
. High Glucose and Carbonyl Stress Impair HIF-1-Regulated Responses and the Control of Mycobacterium tuberculosis in Macrophages. mBio. 2022; 13(5):e0108622.
PMC: 9600926.
DOI: 10.1128/mbio.01086-22.
View
8.
Corral D, Charton A, Krauss M, Blanquart E, Levillain F, Lefrancais E
. ILC precursors differentiate into metabolically distinct ILC1-like cells during Mycobacterium tuberculosis infection. Cell Rep. 2022; 39(3):110715.
PMC: 9043616.
DOI: 10.1016/j.celrep.2022.110715.
View
9.
Wang T, Liu H, Lian G, Zhang S, Wang X, Jiang C
. HIF1-Induced Glycolysis Metabolism Is Essential to the Activation of Inflammatory Macrophages. Mediators Inflamm. 2018; 2017:9029327.
PMC: 5745720.
DOI: 10.1155/2017/9029327.
View
10.
Martin M, DeVisch A, Boudehen Y, Barthe P, Gutierrez C, Turapov O
. A Mycobacterium tuberculosis Effector Targets Mitochondrion, Controls Energy Metabolism, and Limits Cytochrome Exit. Microbiol Spectr. 2023; 11(3):e0106623.
PMC: 10269737.
DOI: 10.1128/spectrum.01066-23.
View
11.
Borah K, Mendum T, Hawkins N, Ward J, Beale M, Larrouy-Maumus G
. Metabolic fluxes for nutritional flexibility of Mycobacterium tuberculosis. Mol Syst Biol. 2021; 17(5):e10280.
PMC: 8094261.
DOI: 10.15252/msb.202110280.
View
12.
Duque-Correa M, Kuhl A, Rodriguez P, Zedler U, Schommer-Leitner S, Rao M
. Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas. Proc Natl Acad Sci U S A. 2014; 111(38):E4024-32.
PMC: 4183271.
DOI: 10.1073/pnas.1408839111.
View
13.
Amaral A, Teixeira A, Hakonsen B, Sonnewald U, Alves P
. A comprehensive metabolic profile of cultured astrocytes using isotopic transient metabolic flux analysis and C-labeled glucose. Front Neuroenergetics. 2011; 3:5.
PMC: 3171112.
DOI: 10.3389/fnene.2011.00005.
View
14.
Gauthier T, Chen W
. Modulation of Macrophage Immunometabolism: A New Approach to Fight Infections. Front Immunol. 2022; 13:780839.
PMC: 8825490.
DOI: 10.3389/fimmu.2022.780839.
View
15.
Beste D, Noh K, Niedenfuhr S, Mendum T, Hawkins N, Ward J
. 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis. Chem Biol. 2013; 20(8):1012-21.
PMC: 3752972.
DOI: 10.1016/j.chembiol.2013.06.012.
View
16.
Shi L, Eugenin E, Subbian S
. Immunometabolism in Tuberculosis. Front Immunol. 2016; 7:150.
PMC: 4838633.
DOI: 10.3389/fimmu.2016.00150.
View
17.
Dutta N, Bruiners N, Zimmerman M, Tan S, Dartois V, Gennaro M
. Adjunctive Host-Directed Therapy With Statins Improves Tuberculosis-Related Outcomes in Mice. J Infect Dis. 2019; 221(7):1079-1087.
PMC: 7325721.
DOI: 10.1093/infdis/jiz517.
View
18.
Lagziel S, Lee W, Shlomi T
. Studying metabolic flux adaptations in cancer through integrated experimental-computational approaches. BMC Biol. 2019; 17(1):51.
PMC: 6609376.
DOI: 10.1186/s12915-019-0669-x.
View
19.
Young J
. INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics. 2014; 30(9):1333-5.
PMC: 3998137.
DOI: 10.1093/bioinformatics/btu015.
View
20.
Marin Franco J, Genoula M, Corral D, Duette G, Ferreyra M, Maio M
. Host-Derived Lipids from Tuberculous Pleurisy Impair Macrophage Microbicidal-Associated Metabolic Activity. Cell Rep. 2020; 33(13):108547.
DOI: 10.1016/j.celrep.2020.108547.
View