6.
Wang C, Fu W, Cao S, Xu H, Tian Q, Gan Y
. Association of adiposity indicators with hypertension among Chinese adults. Nutr Metab Cardiovasc Dis. 2021; 31(5):1391-1400.
DOI: 10.1016/j.numecd.2021.01.001.
View
7.
Moosaie F, Fatemi Abhari S, Deravi N, Karimi Behnagh A, Esteghamati S, Dehghani Firouzabadi F
. Waist-To-Height Ratio Is a More Accurate Tool for Predicting Hypertension Than Waist-To-Hip Circumference and BMI in Patients With Type 2 Diabetes: A Prospective Study. Front Public Health. 2021; 9:726288.
PMC: 8529190.
DOI: 10.3389/fpubh.2021.726288.
View
8.
Calderon-Garcia J, Roncero-Martin R, Rico-Martin S, De Nicolas-Jimenez J, Lopez-Espuela F, Santano-Mogena E
. Effectiveness of Body Roundness Index (BRI) and a Body Shape Index (ABSI) in Predicting Hypertension: A Systematic Review and Meta-Analysis of Observational Studies. Int J Environ Res Public Health. 2021; 18(21).
PMC: 8582804.
DOI: 10.3390/ijerph182111607.
View
9.
Abolhasani M, Maghbouli N, Karbalai Saleh S, Aghsaeifar Z, Sazgara F, Tahmasebi M
. Which anthropometric and metabolic index is superior in hypertension prediction among overweight/obese adults?. Integr Blood Press Control. 2021; 14:153-161.
PMC: 8593692.
DOI: 10.2147/IBPC.S340664.
View
10.
Chaikijurajai T, Laffin L, Tang W
. Artificial Intelligence and Hypertension: Recent Advances and Future Outlook. Am J Hypertens. 2020; 33(11):967-974.
PMC: 7608522.
DOI: 10.1093/ajh/hpaa102.
View
11.
Chang W, Liu Y, Xiao Y, Yuan X, Xu X, Zhang S
. A Machine-Learning-Based Prediction Method for Hypertension Outcomes Based on Medical Data. Diagnostics (Basel). 2019; 9(4).
PMC: 6963807.
DOI: 10.3390/diagnostics9040178.
View
12.
Leha A, Hellenkamp K, Unsold B, Mushemi-Blake S, Shah A, Hasenfuss G
. A machine learning approach for the prediction of pulmonary hypertension. PLoS One. 2019; 14(10):e0224453.
PMC: 6814224.
DOI: 10.1371/journal.pone.0224453.
View
13.
Ghayour-Mobarhan M, Moohebati M, Esmaily H, Ebrahimi M, Parizadeh S, Heidari-Bakavoli A
. Mashhad stroke and heart atherosclerotic disorder (MASHAD) study: design, baseline characteristics and 10-year cardiovascular risk estimation. Int J Public Health. 2015; 60(5):561-72.
DOI: 10.1007/s00038-015-0679-6.
View
14.
Muntner P, Shimbo D, Carey R, Charleston J, Gaillard T, Misra S
. Measurement of Blood Pressure in Humans: A Scientific Statement From the American Heart Association. Hypertension. 2019; 73(5):e35-e66.
PMC: 11409525.
DOI: 10.1161/HYP.0000000000000087.
View
15.
Ashwell M, Gibson S
. Waist to height ratio is a simple and effective obesity screening tool for cardiovascular risk factors: Analysis of data from the British National Diet And Nutrition Survey of adults aged 19-64 years. Obes Facts. 2010; 2(2):97-103.
PMC: 6444829.
DOI: 10.1159/000203363.
View
16.
Thomas D, Bredlau C, Bosy-Westphal A, Mueller M, Shen W, Gallagher D
. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity (Silver Spring). 2013; 21(11):2264-71.
PMC: 3692604.
DOI: 10.1002/oby.20408.
View
17.
Krakauer N, Krakauer J
. A new body shape index predicts mortality hazard independently of body mass index. PLoS One. 2012; 7(7):e39504.
PMC: 3399847.
DOI: 10.1371/journal.pone.0039504.
View
18.
Hooley J, Teasdale J
. Predictors of relapse in unipolar depressives: expressed emotion, marital distress, and perceived criticism. J Abnorm Psychol. 1989; 98(3):229-35.
DOI: 10.1037//0021-843x.98.3.229.
View
19.
Mohammadi F, Pourzamani H, Karimi H, Mohammadi M, Mohammadi M, Ardalan N
. Artificial neural network and logistic regression modelling to characterize COVID-19 infected patients in local areas of Iran. Biomed J. 2021; 44(3):304-316.
PMC: 7905378.
DOI: 10.1016/j.bj.2021.02.006.
View
20.
Aghasizadeh M, Samadi S, Sahebkar A, Miri-Moghaddam E, Esmaily H, Souktanloo M
. Serum HDL cholesterol uptake capacity in subjects from the MASHAD cohort study: Its value in determining the risk of cardiovascular endpoints. J Clin Lab Anal. 2021; 35(6):e23770.
PMC: 8183926.
DOI: 10.1002/jcla.23770.
View