» Articles » PMID: 38037273

Design, Synthesis, and Histone Deacetylase Inhibition Study of Novel 4-(2-aminoethyl) Phenol Derivatives

Overview
Publisher Wiley
Date 2023 Dec 1
PMID 38037273
Authors
Affiliations
Soon will be listed here.
Abstract

Histone deacetylases (HDACs) have been identified as promising targets for anticancer treatment. The study demonstrates virtual screening, molecular docking, and synthesis of 4-(2-aminoethyl) phenol derivatives as HDAC inhibitors. The virtual screening and molecular docking analysis led to the identification of 10 representative compounds, which were evaluated based on their drug-like properties. The results demonstrated that these compounds effectively interacted with the active site pocket of HDAC 3 through π-stacking, Zn coordination, hydrogen bonding, and hydrophobic interactions with catalytic residues. Furthermore, a series of 4-(2-aminoethyl) phenol derivatives were synthesized, and their HDAC inhibitory activity was evaluated. Compounds 18 and 20 showed significant HDAC inhibitory activity of 64.94 ± 1.17% and 52.45 ± 1.45%, respectively, compared to the solvent control. The promising results of this study encourage further research on 4-(2-aminoethyl) phenol derivatives and may provide significant insight into the design of novel small molecule HDAC inhibitors to fight against target-specific malignancies of chronic obstructive pulmonary disease and nonsmall cell lung cancer in the future.

Citing Articles

Gallic acid alleviates ferroptosis by negatively regulating APOC3 and improves nerve function deficit caused by traumatic brain injury.

Liu Y, Fu X, Li J, Guo J, Zhao Z, Zheng J Sci Rep. 2025; 15(1):7815.

PMID: 40050387 PMC: 11885476. DOI: 10.1038/s41598-025-92383-0.