Self-Assembled Nanocoatings Protect Microbial Fertilizers for Climate-Resilient Agriculture
Overview
Affiliations
Chemical fertilizers have been crucial for sustaining the current global population by supplementing overused farmland to support consistent food production, but their use is unsustainable. is a nitrogen-fixing bacterium that could be used as a fertilizer replacement, but this microbe is delicate. It is sensitive to stressors, such as freeze-drying and high temperatures. Here, we demonstrate protection of from freeze-drying, high temperatures (50 C), and high humidity using self-assembling metal-phenolic network (MPN) coatings. The composition of the MPN is found to significantly impact its protective efficacy, and with optimized compositions, no viability loss is observed for MPN-coated microbes under conditions where uncoated cells do not survive. Further, we demonstrate that MPN-coated microbes improve germination of seeds by 150% as compared to those treated with fresh . Taken together, these results demonstrate the protective capabilities of MPNs against environmental stressors and represent a critical step towards enabling the production and storage of delicate microbes under nonideal conditions.
Growth and Change: A Year in Review at .
Jones C JACS Au. 2025; 5(1):1-2.
PMID: 39886582 PMC: 11775708. DOI: 10.1021/jacsau.5c00007.