6.
Ahmadi S, Sheikh-Zeinoddin M, Soleimanian-Zad S, Alihosseini F, Yadav H
. Effects of different drying methods on the physicochemical properties and antioxidant activities of isolated acorn polysaccharides. Lebensm Wiss Technol. 2022; 100:1-9.
PMC: 6309185.
DOI: 10.1016/j.lwt.2018.10.027.
View
7.
Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P
. Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev. 2009; 33(5):917-41.
DOI: 10.1111/j.1574-6976.2009.00183.x.
View
8.
Aysu T, Sanna A
. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils. Bioresour Technol. 2015; 194:108-16.
DOI: 10.1016/j.biortech.2015.07.027.
View
9.
Scaglioni P, Pagnussatt F, Lemos A, Nicolli C, Del Ponte E, Badiale-Furlong E
. Nannochloropsis sp. and Spirulina sp. as a Source of Antifungal Compounds to Mitigate Contamination by Fusarium graminearum Species Complex. Curr Microbiol. 2019; 76(8):930-938.
DOI: 10.1007/s00284-019-01663-2.
View
10.
Ying Z, Han X, Li J
. Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chem. 2014; 127(3):1273-9.
DOI: 10.1016/j.foodchem.2011.01.083.
View
11.
Sudfeld C, Hubacek M, Figueiredo D, Naduthodi M, van der Oost J, Wijffels R
. High-throughput insertional mutagenesis reveals novel targets for enhancing lipid accumulation in Nannochloropsis oceanica. Metab Eng. 2021; 66:239-258.
DOI: 10.1016/j.ymben.2021.04.012.
View
12.
Verni M, Demarinis C, Rizzello C, Pontonio E
. Bioprocessing to Preserve and Improve Microalgae Nutritional and Functional Potential: Novel Insight and Perspectives. Foods. 2023; 12(5).
PMC: 10001325.
DOI: 10.3390/foods12050983.
View
13.
Laroche C
. Exopolysaccharides from Microalgae and Cyanobacteria: Diversity of Strains, Production Strategies, and Applications. Mar Drugs. 2022; 20(5).
PMC: 9148076.
DOI: 10.3390/md20050336.
View
14.
Gerde J, Montalbo-Lomboy M, Yao L, Grewell D, Wang T
. Evaluation of microalgae cell disruption by ultrasonic treatment. Bioresour Technol. 2012; 125:175-81.
DOI: 10.1016/j.biortech.2012.08.110.
View
15.
Griffiths M, Garcin C, van Hille R, Harrison S
. Interference by pigment in the estimation of microalgal biomass concentration by optical density. J Microbiol Methods. 2011; 85(2):119-23.
DOI: 10.1016/j.mimet.2011.02.005.
View
16.
Kocer A, Inan B, Kaptan Usul S, Ozcimen D, Yilmaz M, Isildak I
. Exopolysaccharides from microalgae: production, characterization, optimization and techno-economic assessment. Braz J Microbiol. 2021; 52(4):1779-1790.
PMC: 8578504.
DOI: 10.1007/s42770-021-00575-3.
View
17.
Yaakob M, Mohamed R, Al-Gheethi A, Aswathnarayana Gokare R, Ambati R
. Influence of Nitrogen and Phosphorus on Microalgal Growth, Biomass, Lipid, and Fatty Acid Production: An Overview. Cells. 2021; 10(2).
PMC: 7918059.
DOI: 10.3390/cells10020393.
View
18.
Taylor K
. A colorimetric method for the quantitation of uronic acids and a specific assay for galacturonic acid. Anal Biochem. 1992; 201(1):190-6.
DOI: 10.1016/0003-2697(92)90194-c.
View
19.
Pandeirada C, Maricato E, Ferreira S, Correia V, Pinheiro B, Evtuguin D
. Structural analysis and potential immunostimulatory activity of Nannochloropsis oculata polysaccharides. Carbohydr Polym. 2019; 222:114962.
DOI: 10.1016/j.carbpol.2019.06.001.
View
20.
Zhang J, Wen C, Gu J, Ji C, Duan Y, Zhang H
. Effects of subcritical water extraction microenvironment on the structure and biological activities of polysaccharides from Lentinus edodes. Int J Biol Macromol. 2018; 123:1002-1011.
DOI: 10.1016/j.ijbiomac.2018.11.194.
View