» Articles » PMID: 38009224

Parental Cardiorespiratory Fitness Influences Early Life Energetics and Metabolic Health

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

High cardiorespiratory fitness (CRF) is associated with a reduced risk of metabolic disease and is linked to superior mitochondrial respiratory function. This study investigated how intrinsic CRF affects bioenergetics and metabolic health in adulthood and early life. Adult rats selectively bred for low and high running capacity [low capacity runners (LCR) and high capacity runners (HCR), respectively] underwent metabolic phenotyping before mating. Weanlings were evaluated at 4-6 wk of age, and whole body energetics and behavior were assessed using metabolic cages. Mitochondrial respiratory function was assessed in permeabilized tissues through high-resolution respirometry. Proteomic signatures of adult and weanling tissues were determined using mass spectrometry. The adult HCR group exhibited lower body mass, improved glucose tolerance, and greater physical activity compared with the LCR group. The adult HCR group demonstrated higher mitochondrial respiratory capacities in the soleus and heart compared with the adult LCR group, which coincided with a greater abundance of proteins involved in lipid catabolism. HCR and LCR weanlings had similar body mass, but HCR weanlings displayed reduced adiposity. In addition, HCR weanlings exhibited better glucose tolerance and higher physical activity levels than LCR weanlings. Higher respiratory capacities were observed in the soleus, heart, and liver tissues of HCR weanlings compared with LCR weanlings, which were not owed to greater mitochondrial content. Proteomic analyses indicated a greater potential for lipid oxidation in the contractile muscles of HCR weanlings. In conclusion, offspring born to parents with high CRF possess an enhanced capacity for lipid catabolism and oxidative phosphorylation, thereby influencing metabolic health. These findings highlight that intrinsic CRF shapes the bioenergetic phenotype with implications for metabolic resilience in early life. Inherited cardiorespiratory fitness (CRF) influences early life bioenergetics and metabolic health. Higher intrinsic CRF was associated with reduced adiposity and improved glucose tolerance in early life. This metabolic phenotype was accompanied by greater mitochondrial respiratory capacity in skeletal muscle, heart, and liver tissue. Proteomic profiling of these three tissues further revealed potential mechanisms linking inherited CRF to early life metabolism.

Citing Articles

Aerobic capacity and muscle proteome: Insights from a mouse model.

Plaza-Florido A, Santos-Lozano A, Lopez-Ortiz S, Galvez B, Arenas J, Martin M Exp Physiol. 2024; 110(2):293-306.

PMID: 39572863 PMC: 11782188. DOI: 10.1113/EP092308.

References
1.
Mogensen M, Sahlin K, Fernstrom M, Glintborg D, Vind B, Beck-Nielsen H . Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes. 2007; 56(6):1592-9. DOI: 10.2337/db06-0981. View

2.
Bloemen J, Venema K, van de Poll M, Olde Damink S, Buurman W, Dejong C . Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin Nutr. 2009; 28(6):657-61. DOI: 10.1016/j.clnu.2009.05.011. View

3.
Koch L, Britton S . Theoretical and Biological Evaluation of the Link between Low Exercise Capacity and Disease Risk. Cold Spring Harb Perspect Med. 2017; 8(1). PMC: 5749140. DOI: 10.1101/cshperspect.a029868. View

4.
Pekkala S, Lensu S, Nokia M, Vanhatalo S, Koch L, Britton S . Intrinsic aerobic capacity governs the associations between gut microbiota composition and fat metabolism age-dependently in rat siblings. Physiol Genomics. 2017; 49(12):733-746. PMC: 5814668. DOI: 10.1152/physiolgenomics.00081.2017. View

5.
Kozich J, Westcott S, Baxter N, Highlander S, Schloss P . Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013; 79(17):5112-20. PMC: 3753973. DOI: 10.1128/AEM.01043-13. View