» Articles » PMID: 38007978

WarpDrive: Improving Spatial Normalization Using Manual Refinements

Abstract

Spatial normalization-the process of mapping subject brain images to an average template brain-has evolved over the last 20+ years into a reliable method that facilitates the comparison of brain imaging results across patients, centers & modalities. While overall successful, sometimes, this automatic process yields suboptimal results, especially when dealing with brains with extensive neurodegeneration and atrophy patterns, or when high accuracy in specific regions is needed. Here we introduce WarpDrive, a novel tool for manual refinements of image alignment after automated registration. We show that the tool applied in a cohort of patients with Alzheimer's disease who underwent deep brain stimulation surgery helps create more accurate representations of the data as well as meaningful models to explain patient outcomes. The tool is built to handle any type of 3D imaging data, also allowing refinements in high-resolution imaging, including histology and multiple modalities to precisely aggregate multiple data sources together.

Citing Articles

Engaging dystonia networks with subthalamic stimulation.

Butenko K, Neudorfer C, Dembek T, Hollunder B, Meyer G, Li N Proc Natl Acad Sci U S A. 2025; 122(2):e2417617122.

PMID: 39773021 PMC: 11745339. DOI: 10.1073/pnas.2417617122.


Exploring White Matter Microstructure with Symptom Severity and Outcomes Following Deep Brain Stimulation in Tremor Syndromes.

Andrews L, Keller S, Ratcliffe C, Osman-Farah J, Shepherd H, Bhojak M Tremor Other Hyperkinet Mov (N Y). 2024; 14:43.

PMID: 39220675 PMC: 11363889. DOI: 10.5334/tohm.904.


Engaging dystonia networks with subthalamic stimulation.

Butenko K, Neudorfer C, Dembek T, Hollunder B, Meyer G, Li N medRxiv. 2024; .

PMID: 38903109 PMC: 11188120. DOI: 10.1101/2024.05.24.24307896.


Deep brain stimulation of symptom-specific networks in Parkinson's disease.

Rajamani N, Friedrich H, Butenko K, Dembek T, Lange F, Navratil P Nat Commun. 2024; 15(1):4662.

PMID: 38821913 PMC: 11143329. DOI: 10.1038/s41467-024-48731-1.


Mapping dysfunctional circuits in the frontal cortex using deep brain stimulation.

Hollunder B, Ostrem J, Sahin I, Rajamani N, Oxenford S, Butenko K Nat Neurosci. 2024; 27(3):573-586.

PMID: 38388734 PMC: 10917675. DOI: 10.1038/s41593-024-01570-1.

References
1.
Hering A, Hansen L, Mok T, Chung A, Siebert H, Hager S . Learn2Reg: Comprehensive Multi-Task Medical Image Registration Challenge, Dataset and Evaluation in the Era of Deep Learning. IEEE Trans Med Imaging. 2022; 42(3):697-712. DOI: 10.1109/TMI.2022.3213983. View

2.
Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P . The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013; 26(6):1045-57. PMC: 3824915. DOI: 10.1007/s10278-013-9622-7. View

3.
Kapur T, Pieper S, Fedorov A, Fillion-Robin J, Halle M, ODonnell L . Increasing the impact of medical image computing using community-based open-access hackathons: The NA-MIC and 3D Slicer experience. Med Image Anal. 2016; 33:176-180. PMC: 5003088. DOI: 10.1016/j.media.2016.06.035. View

4.
Nath V, Yang D, Landman B, Xu D, Roth H . Diminishing Uncertainty Within the Training Pool: Active Learning for Medical Image Segmentation. IEEE Trans Med Imaging. 2020; 40(10):2534-2547. DOI: 10.1109/TMI.2020.3048055. View

5.
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N . Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002; 15(1):273-89. DOI: 10.1006/nimg.2001.0978. View