6.
Herting M, Nagel B
. Aerobic fitness relates to learning on a virtual Morris Water Task and hippocampal volume in adolescents. Behav Brain Res. 2012; 233(2):517-25.
PMC: 3403721.
DOI: 10.1016/j.bbr.2012.05.012.
View
7.
Khan N, Baym C, Monti J, Raine L, Drollette E, Scudder M
. Central adiposity is negatively associated with hippocampal-dependent relational memory among overweight and obese children. J Pediatr. 2014; 166(2):302-8.e1.
PMC: 4308543.
DOI: 10.1016/j.jpeds.2014.10.008.
View
8.
Ruotsalainen I, Glerean E, Karvanen J, Gorbach T, Renvall V, Syvaoja H
. Physical activity and aerobic fitness in relation to local and interhemispheric functional connectivity in adolescents' brains. Brain Behav. 2020; 11(2):e01941.
PMC: 7882164.
DOI: 10.1002/brb3.1941.
View
9.
Hoff G, van den Heuvel M, Benders M, Kersbergen K, de Vries L
. On development of functional brain connectivity in the young brain. Front Hum Neurosci. 2013; 7:650.
PMC: 3792361.
DOI: 10.3389/fnhum.2013.00650.
View
10.
Voss M, Chaddock L, Kim J, Vanpatter M, Pontifex M, Raine L
. Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience. 2011; 199:166-76.
PMC: 3237764.
DOI: 10.1016/j.neuroscience.2011.10.009.
View
11.
Brooks S, Parks S, Stamoulis C
. Widespread Positive Direct and Indirect Effects of Regular Physical Activity on the Developing Functional Connectome in Early Adolescence. Cereb Cortex. 2021; 31(10):4840-4852.
DOI: 10.1093/cercor/bhab126.
View
12.
Konrad K, Neufang S, Thiel C, Specht K, Hanisch C, Fan J
. Development of attentional networks: an fMRI study with children and adults. Neuroimage. 2005; 28(2):429-39.
DOI: 10.1016/j.neuroimage.2005.06.065.
View
13.
Chaddock L, Erickson K, Prakash R, Kim J, Voss M, Vanpatter M
. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res. 2010; 1358:172-83.
PMC: 3953557.
DOI: 10.1016/j.brainres.2010.08.049.
View
14.
Warren D, Rangel A, Christopher-Hayes N, Eastman J, Frenzel M, Stephen J
. Resting-state functional connectivity of the human hippocampus in periadolescent children: Associations with age and memory performance. Hum Brain Mapp. 2021; 42(11):3620-3642.
PMC: 8249892.
DOI: 10.1002/hbm.25458.
View
15.
Petrican R, Fornito A, Boyland E
. Lifestyle Factors Counteract the Neurodevelopmental Impact of Genetic Risk for Accelerated Brain Aging in Adolescence. Biol Psychiatry. 2023; 95(5):453-464.
DOI: 10.1016/j.biopsych.2023.06.023.
View
16.
Murphy K, Birn R, Handwerker D, Jones T, Bandettini P
. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?. Neuroimage. 2008; 44(3):893-905.
PMC: 2750906.
DOI: 10.1016/j.neuroimage.2008.09.036.
View
17.
Valkenborghs S, Noetel M, Hillman C, Nilsson M, Smith J, Ortega F
. The Impact of Physical Activity on Brain Structure and Function in Youth: A Systematic Review. Pediatrics. 2019; 144(4).
DOI: 10.1542/peds.2018-4032.
View
18.
Menon V
. Developmental pathways to functional brain networks: emerging principles. Trends Cogn Sci. 2013; 17(12):627-40.
DOI: 10.1016/j.tics.2013.09.015.
View
19.
Harms M, Somerville L, Ances B, Andersson J, Barch D, Bastiani M
. Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects. Neuroimage. 2018; 183:972-984.
PMC: 6484842.
DOI: 10.1016/j.neuroimage.2018.09.060.
View
20.
Chaddock-Heyman L, Erickson K, Chappell M, Johnson C, Kienzler C, Knecht A
. Aerobic fitness is associated with greater hippocampal cerebral blood flow in children. Dev Cogn Neurosci. 2016; 20:52-8.
PMC: 6987716.
DOI: 10.1016/j.dcn.2016.07.001.
View