6.
Quan W, Kong S, Li S, Liu H, Ouyang Q, Huang Y
. Grafting of 18β-Glycyrrhetinic Acid and Sialic Acid onto Chitosan to Produce a New Amphipathic Chitosan Derivative: Synthesis, Characterization, and Cytotoxicity. Molecules. 2021; 26(2).
PMC: 7829902.
DOI: 10.3390/molecules26020452.
View
7.
Fatima F, Siddiqui S, Ahmad Khan W
. Nanoparticles as Novel Emerging Therapeutic Antibacterial Agents in the Antibiotics Resistant Era. Biol Trace Elem Res. 2020; 199(7):2552-2564.
DOI: 10.1007/s12011-020-02394-3.
View
8.
Li Q, Zhang W, Liao S, Xing D, Xiao Y, Zhou D
. Mechanism of lead adsorption by a Bacillus cereus strain with indole-3-acetic acid secretion and inorganic phosphorus dissolution functions. BMC Microbiol. 2023; 23(1):57.
PMC: 9985246.
DOI: 10.1186/s12866-023-02795-z.
View
9.
Piegat A, Zywicka A, Niemczyk A, Goszczynska A
. Antibacterial Activity of ,-Acylated Chitosan Derivative. Polymers (Basel). 2021; 13(1).
PMC: 7794783.
DOI: 10.3390/polym13010107.
View
10.
Zhang L, Zhang Z, Li C, Hu Z, Liang Y, Yang Z
. Preparation and characterization of amphiphilic chitosan/iodine composite film as antimicrobial material. Int J Biol Macromol. 2022; 222(Pt B):2426-2438.
DOI: 10.1016/j.ijbiomac.2022.10.028.
View
11.
Wu M, Guo K, Dong H, Zeng R, Tu M, Zhao J
. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid-phosphorylcholine-chitosan conjugate. Mater Sci Eng C Mater Biol Appl. 2014; 45:162-9.
DOI: 10.1016/j.msec.2014.09.008.
View
12.
Huang W, Chang M, Chu C, Chang C, Li M, Liu D
. Self-assembled amphiphilic chitosan: A time-dependent nanostructural evolution and associated drug encapsulation/elution mechanism. Carbohydr Polym. 2019; 215:246-252.
DOI: 10.1016/j.carbpol.2019.03.083.
View
13.
Shi Z, Guo R, Li W, Zhang Y, Xue W, Tang Y
. Nanoparticles of deoxycholic acid, polyethylene glycol and folic acid-modified chitosan for targeted delivery of doxorubicin. J Mater Sci Mater Med. 2013; 25(3):723-31.
DOI: 10.1007/s10856-013-5113-0.
View
14.
Ahmad N, Wee C, Wai L, Mohamad Zin N, Azmi F
. Biomimetic amphiphilic chitosan nanoparticles: Synthesis, characterization and antimicrobial activity. Carbohydr Polym. 2020; 254:117299.
DOI: 10.1016/j.carbpol.2020.117299.
View
15.
Li Z, Yang F, Yang R
. Synthesis and characterization of chitosan derivatives with dual-antibacterial functional groups. Int J Biol Macromol. 2015; 75:378-87.
DOI: 10.1016/j.ijbiomac.2015.01.056.
View
16.
Baldelli A, Boraey M, Oguzlu H, Cidem A, Rodriguez A, Ong H
. Engineered nasal dry powder for the encapsulation of bioactive compounds. Drug Discov Today. 2022; 27(8):2300-2308.
DOI: 10.1016/j.drudis.2022.04.012.
View
17.
Zhang Q, Zhou H, Jiang P, Xiao X
. Metal-based nanomaterials as antimicrobial agents: A novel driveway to accelerate the aggravation of antibiotic resistance. J Hazard Mater. 2023; 455:131658.
DOI: 10.1016/j.jhazmat.2023.131658.
View
18.
Zhang J, Tang W, Zhang X, Song Z, Tong T
. An Overview of Stimuli-Responsive Intelligent Antibacterial Nanomaterials. Pharmaceutics. 2023; 15(8).
PMC: 10458108.
DOI: 10.3390/pharmaceutics15082113.
View
19.
Shih P, Liao Y, Tseng Y, Deng F, Lin C
. A Potential Antifungal Effect of Chitosan Against Is Mediated via the Inhibition of SAGA Complex Component Expression and the Subsequent Alteration of Cell Surface Integrity. Front Microbiol. 2019; 10:602.
PMC: 6443709.
DOI: 10.3389/fmicb.2019.00602.
View
20.
Kamaruzzaman N, Tan L, Hamdan R, Choong S, Wong W, Gibson A
. Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics?. Int J Mol Sci. 2019; 20(11).
PMC: 6600223.
DOI: 10.3390/ijms20112747.
View