» Articles » PMID: 38001068

Confined Cu-OH Single Sites in SSZ-13 Zeolite for the Direct Oxidation of Methane to Methanol

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Nov 24
PMID 38001068
Authors
Affiliations
Soon will be listed here.
Abstract

The direct oxidation of methane to methanol (MTM) remains a significant challenge in heterogeneous catalysis due to the high dissociation energy of the C-H bond in methane and the high desorption energy of methanol. In this work, we demonstrate a breakthrough in selective MTM by achieving a high methanol space-time yield of 2678 mmol molCu-1 h-1 with 93% selectivity in a continuous methane-steam reaction at 400 °C. The superior performance is attributed to the confinement effect of 6-membered ring (6MR) voids in SSZ-13 zeolite, which host isolated Cu-OH single sites. Our results provide a deeper understanding of the role of Cu-zeolites in continuous methane-steam to methanol conversion and pave the way for further improvement.

Citing Articles

Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies.

Rajeev A, Mohammed T, George A, Sankaralingam M Chem Rec. 2025; :e202400186.

PMID: 39817884 PMC: 11811604. DOI: 10.1002/tcr.202400186.


Revealing Active Sites and Reaction Pathways in Direct Oxidation of Methane over Fe-Containing CHA Zeolites Affected by the Al Arrangement.

Xiao P, Wang L, Toyoda H, Wang Y, Nakamura K, Huang J J Am Chem Soc. 2024; 146(46):31969-31981.

PMID: 39499854 PMC: 11583304. DOI: 10.1021/jacs.4c11773.


Spectroscopic Investigation of the Role of Water in Copper Zeolite Methane Oxidation.

Heyer A, Ma J, Plessers D, Braun A, Bols M, Rhoda H J Am Chem Soc. 2024; 146(31):21208-21213.

PMID: 39046226 PMC: 11808935. DOI: 10.1021/jacs.4c06010.


Copper-oxygen adducts: new trends in characterization and properties towards C-H activation.

De Tovar J, Leblay R, Wang Y, Wojcik L, Thibon-Pourret A, Reglier M Chem Sci. 2024; 15(27):10308-10349.

PMID: 38994420 PMC: 11234856. DOI: 10.1039/d4sc01762e.


One-Pot Cu/SAPO-34 for Continuous Methane Selective Oxidation to Methanol.

Sun L, Wang Y, Gu X, Zhao M, Yuan L Molecules. 2024; 29(10).

PMID: 38792136 PMC: 11124382. DOI: 10.3390/molecules29102273.

References
1.
Sushkevich V, Palagin D, Ranocchiari M, van Bokhoven J . Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science. 2017; 356(6337):523-527. DOI: 10.1126/science.aam9035. View

2.
Sushkevich V, Palagin D, van Bokhoven J . The Effect of the Active-Site Structure on the Activity of Copper Mordenite in the Aerobic and Anaerobic Conversion of Methane into Methanol. Angew Chem Int Ed Engl. 2018; 57(29):8906-8910. DOI: 10.1002/anie.201802922. View

3.
Pappas D, Borfecchia E, Dyballa M, Pankin I, Lomachenko K, Martini A . Methane to Methanol: Structure-Activity Relationships for Cu-CHA. J Am Chem Soc. 2017; 139(42):14961-14975. DOI: 10.1021/jacs.7b06472. View

4.
Pappas D, Martini A, Dyballa M, Kvande K, Teketel S, Lomachenko K . The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment. J Am Chem Soc. 2018; 140(45):15270-15278. DOI: 10.1021/jacs.8b08071. View

5.
Newton M, Knorpp A, Sushkevich V, Palagin D, van Bokhoven J . Active sites and mechanisms in the direct conversion of methane to methanol using Cu in zeolitic hosts: a critical examination. Chem Soc Rev. 2020; 49(5):1449-1486. DOI: 10.1039/c7cs00709d. View