6.
Salthouse T
. Selective review of cognitive aging. J Int Neuropsychol Soc. 2010; 16(5):754-60.
PMC: 3637655.
DOI: 10.1017/S1355617710000706.
View
7.
Kochunov P, Hong L, Dennis E, Morey R, Tate D, Wilde E
. ENIGMA-DTI: Translating reproducible white matter deficits into personalized vulnerability metrics in cross-diagnostic psychiatric research. Hum Brain Mapp. 2020; 43(1):194-206.
PMC: 8675425.
DOI: 10.1002/hbm.24998.
View
8.
Cole J
. Multimodality neuroimaging brain-age in UK biobank: relationship to biomedical, lifestyle, and cognitive factors. Neurobiol Aging. 2020; 92:34-42.
PMC: 7280786.
DOI: 10.1016/j.neurobiolaging.2020.03.014.
View
9.
Yeung H, Stolicyn A, Buchanan C, Tucker-Drob E, Bastin M, Luz S
. Predicting sex, age, general cognition and mental health with machine learning on brain structural connectomes. Hum Brain Mapp. 2022; 44(5):1913-1933.
PMC: 9980898.
DOI: 10.1002/hbm.26182.
View
10.
Yang Z, Chang C, Xu T, Jiang L, Handwerker D, Castellanos F
. Connectivity trajectory across lifespan differentiates the precuneus from the default network. Neuroimage. 2013; 89:45-56.
PMC: 3944140.
DOI: 10.1016/j.neuroimage.2013.10.039.
View
11.
Nooner K, Colcombe S, Tobe R, Mennes M, Benedict M, Moreno A
. The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry. Front Neurosci. 2012; 6:152.
PMC: 3472598.
DOI: 10.3389/fnins.2012.00152.
View
12.
Glasser M, Coalson T, Robinson E, Hacker C, Harwell J, Yacoub E
. A multi-modal parcellation of human cerebral cortex. Nature. 2016; 536(7615):171-178.
PMC: 4990127.
DOI: 10.1038/nature18933.
View
13.
Valizadeh S, Hanggi J, Merillat S, Jancke L
. Age prediction on the basis of brain anatomical measures. Hum Brain Mapp. 2016; 38(2):997-1008.
PMC: 6866800.
DOI: 10.1002/hbm.23434.
View
14.
Liu X, Qiu S, Wang X, Chen H, Tang Y, Qin Y
. Aberrant dynamic Functional-Structural connectivity coupling of Large-scale brain networks in poststroke motor dysfunction. Neuroimage Clin. 2023; 37:103332.
PMC: 10037213.
DOI: 10.1016/j.nicl.2023.103332.
View
15.
Griffa A, Amico E, Liegeois R, Van De Ville D, Preti M
. Brain structure-function coupling provides signatures for task decoding and individual fingerprinting. Neuroimage. 2022; 250:118970.
DOI: 10.1016/j.neuroimage.2022.118970.
View
16.
Betzel R, Byrge L, He Y, Goni J, Zuo X, Sporns O
. Changes in structural and functional connectivity among resting-state networks across the human lifespan. Neuroimage. 2014; 102 Pt 2:345-57.
DOI: 10.1016/j.neuroimage.2014.07.067.
View
17.
Kawahara J, Brown C, Miller S, Booth B, Chau V, Grunau R
. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment. Neuroimage. 2016; 146:1038-1049.
DOI: 10.1016/j.neuroimage.2016.09.046.
View
18.
Pfefferbaum A, Rohlfing T, Rosenbloom M, Sullivan E
. Combining atlas-based parcellation of regional brain data acquired across scanners at 1.5 T and 3.0 T field strengths. Neuroimage. 2012; 60(2):940-51.
PMC: 3303927.
DOI: 10.1016/j.neuroimage.2012.01.092.
View
19.
Franke K, Gaser C
. Ten Years of as a Neuroimaging Biomarker of Brain Aging: What Insights Have We Gained?. Front Neurol. 2019; 10:789.
PMC: 6702897.
DOI: 10.3389/fneur.2019.00789.
View
20.
Zhang K, Wang M, Zhang J, Xie J, Su X, Du X
. Dynamic Alterations in Spontaneous Brain Activity in Mothers: A Resting-State Functional Magnetic Resonance Imaging Study. Neurosci Bull. 2019; 35(4):766-770.
PMC: 6616608.
DOI: 10.1007/s12264-019-00392-7.
View