» Articles » PMID: 37975889

In Situ Deposition of Drug and Gene Nanoparticles on a Patterned Supramolecular Hydrogel to Construct a Directionally Osteochondral Plug

Overview
Journal Nanomicro Lett
Publisher Springer
Date 2023 Nov 17
PMID 37975889
Authors
Affiliations
Soon will be listed here.
Abstract

The integrated repair of bone and cartilage boasts advantages for osteochondral restoration such as a long-term repair effect and less deterioration compared to repairing cartilage alone. Constructing multifactorial, spatially oriented scaffolds to stimulate osteochondral regeneration, has immense significance. Herein, targeted drugs, namely kartogenin@polydopamine (KGN@PDA) nanoparticles for cartilage repair and miRNA@calcium phosphate (miRNA@CaP) NPs for bone regeneration, were in situ deposited on a patterned supramolecular-assembled 2-ureido-4 [lH]-pyrimidinone (UPy) modified gelation hydrogel film, facilitated by the dynamic and responsive coordination and complexation of metal ions and their ligands. This hydrogel film can be rolled into a cylindrical plug, mimicking the Haversian canal structure of natural bone. The resultant hydrogel demonstrates stable mechanical properties, a self-healing ability, a high capability for reactive oxygen species capture, and controlled release of KGN and miR-26a. In vitro, KGN@PDA and miRNA@CaP promote chondrogenic and osteogenic differentiation of mesenchymal stem cells via the JNK/RUNX1 and GSK-3β/β-catenin pathways, respectively. In vivo, the osteochondral plug exhibits optimal subchondral bone and cartilage regeneration, evidenced by a significant increase in glycosaminoglycan and collagen accumulation in specific zones, along with the successful integration of neocartilage with subchondral bone. This biomaterial delivery approach represents a significant toward improved osteochondral repair.

Citing Articles

Recent Strategies and Advances in Hydrogel-Based Delivery Platforms for Bone Regeneration.

Wang X, Zeng J, Gan D, Ling K, He M, Li J Nanomicro Lett. 2024; 17(1):73.

PMID: 39601916 PMC: 11602938. DOI: 10.1007/s40820-024-01557-4.


Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions.

Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z Signal Transduct Target Ther. 2024; 9(1):166.

PMID: 38945949 PMC: 11214942. DOI: 10.1038/s41392-024-01852-x.


Applications of Hydrogels in Osteoarthritis Treatment.

Gan X, Wang X, Huang Y, Li G, Kang H Biomedicines. 2024; 12(4).

PMID: 38672277 PMC: 11048369. DOI: 10.3390/biomedicines12040923.

References
1.
Shen M, Wang C, Hao D, Hao J, Zhu Y, Han X . Multifunctional Nanomachinery for Enhancement of Bone Healing. Adv Mater. 2021; 34(9):e2107924. DOI: 10.1002/adma.202107924. View

2.
Chu C, Dounchis J, Yoshioka M, Sah R, Coutts R, Amiel D . Osteochondral repair using perichondrial cells. A 1-year study in rabbits. Clin Orthop Relat Res. 1997; (340):220-9. DOI: 10.1097/00003086-199707000-00029. View

3.
Dankers P, van Leeuwen E, van Gemert G, Spiering A, Harmsen M, Brouwer L . Chemical and biological properties of supramolecular polymer systems based on oligocaprolactones. Biomaterials. 2006; 27(32):5490-501. DOI: 10.1016/j.biomaterials.2006.07.011. View

4.
Torii S, Jinnouchi H, Sakamoto A, Kutyna M, Cornelissen A, Kuntz S . Drug-eluting coronary stents: insights from preclinical and pathology studies. Nat Rev Cardiol. 2019; 17(1):37-51. DOI: 10.1038/s41569-019-0234-x. View

5.
Nguyen M, Alsberg E . Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog Polym Sci. 2014; 39(7):1236-1265. PMC: 4167348. DOI: 10.1016/j.progpolymsci.2013.12.001. View