6.
Lopez-Yus M, Garcia-Sobreviela M, Del Moral-Bergos R, Arbones-Mainar J
. Gene Therapy Based on Mesenchymal Stem Cells Derived from Adipose Tissue for the Treatment of Obesity and Its Metabolic Complications. Int J Mol Sci. 2023; 24(8).
PMC: 10138576.
DOI: 10.3390/ijms24087468.
View
7.
Chun S, Lim J, Lee E, Han M, Ha Y, Lee J
. Preparation and Characterization of Human Adipose Tissue-Derived Extracellular Matrix, Growth Factors, and Stem Cells: A Concise Review. Tissue Eng Regen Med. 2019; 16(4):385-393.
PMC: 6675808.
DOI: 10.1007/s13770-019-00199-7.
View
8.
Zhang C, Yuan Y, Fang L, Xuan Y
. Promotion of osteogenesis by bioactive glass-ceramic coating: Possible involvement of the Hedgehog signaling pathway. J Orthop Sci. 2019; 24(4):731-736.
DOI: 10.1016/j.jos.2018.12.006.
View
9.
Ohba S
. Hedgehog Signaling in Skeletal Development: Roles of Indian Hedgehog and the Mode of Its Action. Int J Mol Sci. 2020; 21(18).
PMC: 7555016.
DOI: 10.3390/ijms21186665.
View
10.
Lv W, Du D, Gao R, Yu C, Jia Y, Jia Z
. Regulation of Hedgehog signaling Offers A Novel Perspective for Bone Homeostasis Disorder Treatment. Int J Mol Sci. 2019; 20(16).
PMC: 6719140.
DOI: 10.3390/ijms20163981.
View
11.
Wang Y, Dong Z, Yang R, Zong S, Wei X, Wang C
. Inactivation of Ihh in Sp7-Expressing Cells Inhibits Osteoblast Proliferation, Differentiation, and Bone Formation, Resulting in a Dwarfism Phenotype with Severe Skeletal Dysplasia in Mice. Calcif Tissue Int. 2022; 111(5):519-534.
DOI: 10.1007/s00223-022-00999-5.
View
12.
Komori T
. Molecular Mechanism of Runx2-Dependent Bone Development. Mol Cells. 2020; 43(2):168-175.
PMC: 7057844.
DOI: 10.14348/molcells.2019.0244.
View
13.
Yao W, Zhang H, Kulyar M, Ding Y, Waqas M, Mehmood K
. Effect of total flavonoids of Rhizoma Drynariae in thiram induced cytotoxicity of chondrocyte via BMP-2/Runx2 and IHH/PTHrP expressions. Ecotoxicol Environ Saf. 2020; 206:111194.
DOI: 10.1016/j.ecoenv.2020.111194.
View
14.
Mohanapriya R, Akshaya R, Selvamurugan N
. A regulatory role of circRNA-miRNA-mRNA network in osteoblast differentiation. Biochimie. 2021; 193:137-147.
DOI: 10.1016/j.biochi.2021.11.001.
View
15.
Hensley A, McAlinden A
. The role of microRNAs in bone development. Bone. 2020; 143:115760.
PMC: 8019264.
DOI: 10.1016/j.bone.2020.115760.
View
16.
Leng Q, Chen L, Lv Y
. RNA-based scaffolds for bone regeneration: application and mechanisms of mRNA, miRNA and siRNA. Theranostics. 2020; 10(7):3190-3205.
PMC: 7053199.
DOI: 10.7150/thno.42640.
View
17.
Iaquinta M, Lanzillotti C, Mazziotta C, Bononi I, Frontini F, Mazzoni E
. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics. 2021; 11(13):6573-6591.
PMC: 8120225.
DOI: 10.7150/thno.55664.
View
18.
Shaker F, Nikravesh A, Arezumand R, Aghaee-Bakhtiari S
. Web-based tools for miRNA studies analysis. Comput Biol Med. 2020; 127:104060.
DOI: 10.1016/j.compbiomed.2020.104060.
View
19.
Ding Y, Chan C, Lawrence C
. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 2004; 32(Web Server issue):W135-41.
PMC: 441587.
DOI: 10.1093/nar/gkh449.
View
20.
Derakhshani M, Abbaszadeh H, Movassaghpour A, Mehdizadeh A, Ebrahimi-Warkiani M, Yousefi M
. Strategies for elevating hematopoietic stem cells expansion and engraftment capacity. Life Sci. 2019; 232:116598.
DOI: 10.1016/j.lfs.2019.116598.
View