» Articles » PMID: 37961165

A Novel Bayesian Model for Assessing Intratumor Heterogeneity of Tumor Infiltrating Leukocytes with Multi-region Gene Expression Sequencing

Overview
Journal bioRxiv
Date 2023 Nov 14
PMID 37961165
Authors
Affiliations
Soon will be listed here.
Abstract

Intratumor heterogeneity (ITH) of tumor-infiltrated leukocytes (TILs) is an important phenomenon of cancer biology with potentially profound clinical impacts. Multi-region gene expression sequencing data provide a promising opportunity that allows for explorations of TILs and their intratumor heterogeneity for each subject. Although several existing methods are available to infer the proportions of TILs, considerable methodological gaps exist for evaluating intratumor heterogeneity of TILs with multi-region gene expression data. Here, we develop ICeITH, immune cell estimation reveals intratumor heterogeneity, a Bayesian hierarchical model that borrows cell type profiles as prior knowledge to decompose mixed bulk data while accounting for the within-subject correlations among tumor samples. ICeITH quantifies intratumor heterogeneity by the variability of targeted cellular compositions. Through extensive simulation studies, we demonstrate that ICeITH is more accurate in measuring relative cellular abundance and evaluating intratumor heterogeneity compared with existing methods. We also assess the ability of ICeITH to stratify patients by their intratumor heterogeneity score and associate the estimations with the survival outcomes. Finally, we apply ICeITH to two multi-region gene expression datasets from lung cancer studies to classify patients into different risk groups according to the ITH estimations of targeted TILs that shape either pro- or anti-tumor processes. In conclusion, ICeITH is a useful tool to evaluate intratumor heterogeneity of TILs from multi-region gene expression data.

References
1.
Racle J, de Jonge K, Baumgaertner P, Speiser D, Gfeller D . Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. Elife. 2017; 6. PMC: 5718706. DOI: 10.7554/eLife.26476. View

2.
Jia Q, Wu W, Wang Y, Alexander P, Sun C, Gong Z . Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer. Nat Commun. 2018; 9(1):5361. PMC: 6299138. DOI: 10.1038/s41467-018-07767-w. View

3.
Whiteside T, Vujanovic N, Herberman R . Natural killer cells and tumor therapy. Curr Top Microbiol Immunol. 1998; 230:221-44. DOI: 10.1007/978-3-642-46859-9_13. View

4.
Newman A, Liu C, Green M, Gentles A, Feng W, Xu Y . Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015; 12(5):453-7. PMC: 4739640. DOI: 10.1038/nmeth.3337. View

5.
Robinson M, Oshlack A . A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11(3):R25. PMC: 2864565. DOI: 10.1186/gb-2010-11-3-r25. View