6.
DeLong E, Delong D, Clarke-Pearson D
. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988; 44(3):837-45.
View
7.
Ferrari D, Motta A, Strollo M, Banfi G, Locatelli M
. Routine blood tests as a potential diagnostic tool for COVID-19. Clin Chem Lab Med. 2020; 58(7):1095-1099.
DOI: 10.1515/cclm-2020-0398.
View
8.
Sarki R, Ahmed K, Wang H, Zhang Y, Wang K
. Automated detection of COVID-19 through convolutional neural network using chest x-ray images. PLoS One. 2022; 17(1):e0262052.
PMC: 8782355.
DOI: 10.1371/journal.pone.0262052.
View
9.
Calli E, Murphy K, Kurstjens S, Samson T, Herpers R, Smits H
. Deep learning with robustness to missing data: A novel approach to the detection of COVID-19. PLoS One. 2021; 16(7):e0255301.
PMC: 8323880.
DOI: 10.1371/journal.pone.0255301.
View
10.
Kurstjens S, van der Horst A, Herpers R, Geerits M, Kluiters-de Hingh Y, Gottgens E
. Rapid identification of SARS-CoV-2-infected patients at the emergency department using routine testing. Clin Chem Lab Med. 2020; 58(9):1587-1593.
DOI: 10.1515/cclm-2020-0593.
View
11.
Yang W, Sirajuddin A, Zhang X, Liu G, Teng Z, Zhao S
. The role of imaging in 2019 novel coronavirus pneumonia (COVID-19). Eur Radiol. 2020; 30(9):4874-4882.
PMC: 7156903.
DOI: 10.1007/s00330-020-06827-4.
View
12.
Wang Z, Xiao Y, Li Y, Zhang J, Lu F, Hou M
. Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays. Pattern Recognit. 2020; 110:107613.
PMC: 7448783.
DOI: 10.1016/j.patcog.2020.107613.
View
13.
Zhang R, Tie X, Qi Z, Bevins N, Zhang C, Griner D
. Diagnosis of Coronavirus Disease 2019 Pneumonia by Using Chest Radiography: Value of Artificial Intelligence. Radiology. 2020; 298(2):E88-E97.
PMC: 7841876.
DOI: 10.1148/radiol.2020202944.
View
14.
Park S, Kim G, Oh Y, Seo J, Lee S, Kim J
. Multi-task vision transformer using low-level chest X-ray feature corpus for COVID-19 diagnosis and severity quantification. Med Image Anal. 2021; 75:102299.
PMC: 8566090.
DOI: 10.1016/j.media.2021.102299.
View
15.
Wehbe R, Sheng J, Dutta S, Chai S, Dravid A, Barutcu S
. DeepCOVID-XR: An Artificial Intelligence Algorithm to Detect COVID-19 on Chest Radiographs Trained and Tested on a Large U.S. Clinical Data Set. Radiology. 2020; 299(1):E167-E176.
PMC: 7993244.
DOI: 10.1148/radiol.2020203511.
View
16.
Yang H, Hou Y, Vasovic L, Steel P, Chadburn A, Racine-Brzostek S
. Routine Laboratory Blood Tests Predict SARS-CoV-2 Infection Using Machine Learning. Clin Chem. 2020; 66(11):1396-1404.
PMC: 7499540.
DOI: 10.1093/clinchem/hvaa200.
View
17.
Tabik S, Gomez-Rios A, Martin-Rodriguez J, Sevillano-Garcia I, Rey-Area M, Charte D
. COVIDGR Dataset and COVID-SDNet Methodology for Predicting COVID-19 Based on Chest X-Ray Images. IEEE J Biomed Health Inform. 2020; 24(12):3595-3605.
PMC: 8545181.
DOI: 10.1109/JBHI.2020.3037127.
View
18.
Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B
. Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology. 2020; 296(2):E65-E71.
PMC: 7233473.
DOI: 10.1148/radiol.2020200905.
View
19.
Mardani R, Vasmehjani A, Zali F, Gholami A, Mousavi Nasab S, Kaghazian H
. Laboratory Parameters in Detection of COVID-19 Patients with Positive RT-PCR; a Diagnostic Accuracy Study. Arch Acad Emerg Med. 2020; 8(1):e43.
PMC: 7130449.
View
20.
Plante T, Blau A, Berg A, Weinberg A, Jun I, Tapson V
. Development and External Validation of a Machine Learning Tool to Rule Out COVID-19 Among Adults in the Emergency Department Using Routine Blood Tests: A Large, Multicenter, Real-World Study. J Med Internet Res. 2020; 22(12):e24048.
PMC: 7713695.
DOI: 10.2196/24048.
View