» Articles » PMID: 37943381

High-Entropy Layered Oxide Cathode Enabling High-Rate for Solid-State Sodium-Ion Batteries

Overview
Journal Nanomicro Lett
Publisher Springer
Date 2023 Nov 9
PMID 37943381
Authors
Affiliations
Soon will be listed here.
Abstract

Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost. Nevertheless, such cathodes usually suffer from phase transitions, sluggish kinetics and air instability, making it difficult to achieve high performance solid-state sodium-ion batteries. Herein, the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity, achieving high-rate performance, air stability and electrochemically thermal stability for NaLiNiCuFeMnO. This cathode delivers a high reversible capacity (141 mAh g at 0.2C), excellent rate capability (111 mAh g at 8C, 85 mAh g even at 20C), and long-term stability (over 85% capacity retention after 1000 cycles), which is attributed to a rapid and reversible O3-P3 phase transition in regions of low voltage and suppresses phase transition. Moreover, the compound remains unchanged over seven days and keeps thermal stability until 279 ℃. Remarkably, the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g at 5C and keeps retention of 96% after 400 cycles. This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries.

Citing Articles

Mechanisms and Mitigation Strategies of Gas Generation in Sodium-Ion Batteries.

Li X, Chen X, Li M, Wei H, Yang X, Ye S Nanomicro Lett. 2025; 17(1):177.

PMID: 40063177 PMC: 11893957. DOI: 10.1007/s40820-025-01697-1.


An Ultra-Stable, High-Energy and Wide-Temperature-Range Aqueous Alkaline Sodium-Ion Battery with the Microporous CN/rGO Anode.

Li M, Li R, Ma H, Yang M, Dai Y, Yu H Nanomicro Lett. 2025; 17(1):158.

PMID: 39992488 PMC: 11850668. DOI: 10.1007/s40820-024-01589-w.


Sulfolane-Based Flame-Retardant Electrolyte for High-Voltage Sodium-Ion Batteries.

He X, Peng J, Lin Q, Li M, Chen W, Liu P Nanomicro Lett. 2024; 17(1):45.

PMID: 39422856 PMC: 11489388. DOI: 10.1007/s40820-024-01546-7.

References
1.
Li X, Shen X, Zhao J, Yang Y, Zhang Q, Ding F . O3-NaFeNiMnAlO Cathodes with Improved Air Stability for Na-Ion Batteries. ACS Appl Mater Interfaces. 2021; 13(28):33015-33023. DOI: 10.1021/acsami.1c07554. View

2.
Hwang J, Oh S, Myung S, Chung K, Belharouak I, Sun Y . Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat Commun. 2015; 6:6865. DOI: 10.1038/ncomms7865. View

3.
Guo Y, Wang P, Niu Y, Zhang X, Li Q, Yu X . Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes. Nat Commun. 2021; 12(1):5267. PMC: 8421359. DOI: 10.1038/s41467-021-25610-7. View

4.
Rost C, Sachet E, Borman T, Moballegh A, Dickey E, Hou D . Entropy-stabilized oxides. Nat Commun. 2015; 6:8485. PMC: 4598836. DOI: 10.1038/ncomms9485. View

5.
Wang H, Gao X, Zhang S, Mei Y, Ni L, Gao J . High-Entropy Na-Deficient Layered Oxides for Sodium-Ion Batteries. ACS Nano. 2023; 17(13):12530-12543. DOI: 10.1021/acsnano.3c02290. View