» Articles » PMID: 37920810

Surpassing the Nonlinear Conversion Efficiency of Soliton Microcombs

Overview
Journal Nat Photonics
Date 2023 Nov 3
PMID 37920810
Authors
Affiliations
Soon will be listed here.
Abstract

Laser frequency combs are enabling some of the most exciting scientific endeavours in the twenty-first century, ranging from the development of optical clocks to the calibration of the astronomical spectrographs used for discovering Earth-like exoplanets. Dissipative Kerr solitons generated in microresonators currently offer the prospect of attaining frequency combs in miniaturized systems by capitalizing on advances in photonic integration. Most of the applications based on soliton microcombs rely on tuning a continuous-wave laser into a longitudinal mode of a microresonator engineered to display anomalous dispersion. In this configuration, however, nonlinear physics precludes one from attaining dissipative Kerr solitons with high power conversion efficiency, with typical comb powers amounting to ~1% of the available laser power. Here we demonstrate that this fundamental limitation can be overcome by inducing a controllable frequency shift to a selected cavity resonance. Experimentally, we realize this shift using two linearly coupled anomalous-dispersion microresonators, resulting in a coherent dissipative Kerr soliton with a conversion efficiency exceeding 50% and excellent line spacing stability. We describe the soliton dynamics in this configuration and find vastly modified characteristics. By optimizing the microcomb power available on-chip, these results facilitate the practical implementation of a scalable integrated photonic architecture for energy-efficient applications.

Citing Articles

Single soliton microcomb combined with optical phased array for parallel FMCW LiDAR.

Chen J, Li W, Kang Z, Lin Z, Zhao S, Lian D Nat Commun. 2025; 16(1):1056.

PMID: 39865065 PMC: 11770108. DOI: 10.1038/s41467-025-56483-9.


Nonlinear photonics on integrated platforms.

Geng W, Fang Y, Wang Y, Bao C, Liu W, Pan Z Nanophotonics. 2024; 13(18):3253-3278.

PMID: 39634844 PMC: 11614347. DOI: 10.1515/nanoph-2024-0149.


Efficient microresonator frequency combs.

Yang Q, Hu Y, Torres-Company V, Vahala K eLight. 2024; 4(1):18.

PMID: 39415946 PMC: 11481671. DOI: 10.1186/s43593-024-00075-5.


High-coherence parallelization in integrated photonics.

Zhang X, Zhou Z, Guo Y, Zhuang M, Jin W, Shen B Nat Commun. 2024; 15(1):7892.

PMID: 39256391 PMC: 11387407. DOI: 10.1038/s41467-024-52269-7.


Ultraviolet astronomical spectrograph calibration with laser frequency combs from nanophotonic lithium niobate waveguides.

Ludwig M, Ayhan F, Schmidt T, Wildi T, Voumard T, Blum R Nat Commun. 2024; 15(1):7614.

PMID: 39223131 PMC: 11369296. DOI: 10.1038/s41467-024-51560-x.


References
1.
Marin-Palomo P, Kemal J, Karpov M, Kordts A, Pfeifle J, Pfeiffer M . Microresonator-based solitons for massively parallel coherent optical communications. Nature. 2017; 546(7657):274-279. DOI: 10.1038/nature22387. View

2.
Barashenkov IV , Smirnov . Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996; 54(5):5707-5725. DOI: 10.1103/physreve.54.5707. View

3.
Diddams S, Vahala K, Udem T . Optical frequency combs: Coherently uniting the electromagnetic spectrum. Science. 2020; 369(6501). DOI: 10.1126/science.aay3676. View

4.
Suh M, Yi X, Lai Y, Leifer S, Grudinin I, Vasisht G . Searching for Exoplanets Using a Microresonator Astrocomb. Nat Photonics. 2019; 13:25-30. PMC: 6364311. DOI: 10.1038/s41566-018-0312-3. View

5.
Herr T, Brasch V, Jost J, Mirgorodskiy I, Lihachev G, Gorodetsky M . Mode spectrum and temporal soliton formation in optical microresonators. Phys Rev Lett. 2014; 113(12):123901. DOI: 10.1103/PhysRevLett.113.123901. View