» Articles » PMID: 37908202

May Interfere with the Interaction Between ACE2 and SARS-CoV-2 Spike Protein in Vitro and Reduces Lung Inflammation in a Hamster Model of COVID-19

Overview
Journal J Inflamm Res
Publisher Dove Medical Press
Date 2023 Nov 1
PMID 37908202
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: Coronavirus disease 2019 (COVID-19) poses a global health challenge with widespread transmission. Growing concerns about vaccine side effects, diminishing efficacy, and religious-based hesitancy highlight the need for alternative pharmacological approaches. Our study investigates the impact of the ethanol extract of (AC), a native medicinal fungus from Taiwan, on COVID-19 in both in vitro and in vivo contexts.

Methods: We measured the mRNA and protein levels of angiotensin-converting enzyme-2 (ACE2) in human lung cells using real-time reverse transcriptase-polymerase chain reaction and Western blotting, respectively. Additionally, we determined the enzymatic activity of ACE2 using the fluorogenic peptide substrate Mca-YVADAPK(Dnp)-OH. To assess the impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, we used SARS-CoV-2 pseudovirus infections in human embryonic kidney 293T cells expressing ACE2 to measure infection rates. Furthermore, we evaluated the in vivo efficacy of AC in mitigating COVID-19 by conducting experiments on hamsters infected with the Delta variant of SARS-CoV-2.

Results: AC effectively decreased ACE2 mRNA and protein levels, a critical host receptor for the SARS-CoV-2 spike protein, in human lung cells. It also prevented the spike protein from binding to human lung cells. Dehydrosulphurenic acid, an isolate from AC, directly inhibited ACE2 protease activity with an inhibitory constant of 1.53 µM. In vitro experiments showed that both AC and dehydrosulphurenic acid significantly reduced the infection rate of SARS-CoV-2 pseudovirus. In hamsters infected with the Delta variant of SARS-CoV-2, oral administration of AC reduced body weight loss and improved lung injury. Notably, AC also inhibited IL-1β expression in both macrophages and the lung tissues of SARS-CoV-2-infected hamsters.

Conclusion: AC shows potential as a nutraceutical for reducing the risk of SARS-CoV-2 infection by disrupting the interaction between ACE2 and the SARS-CoV-2 spike protein, and for preventing COVID-19-associated lung inflammation.

Citing Articles

Antrodia cinnamomea triterpenoids attenuate cardiac hypertrophy via the SNW1/RXR/ALDH2 axis.

Ma Y, Wang Y, Anwaier G, Tuerdi N, Wu Y, Huang Y Redox Biol. 2024; 78:103437.

PMID: 39591904 PMC: 11626818. DOI: 10.1016/j.redox.2024.103437.

References
1.
Conti P, Caraffa A, Gallenga C, Ross R, Kritas S, Frydas I . Coronavirus-19 (SARS-CoV-2) induces acute severe lung inflammation via IL-1 causing cytokine storm in COVID-19: a promising inhibitory strategy. J Biol Regul Homeost Agents. 2020; 34(6):1971-1975. DOI: 10.23812/20-1-E. View

2.
Fantini J, Di Scala C, Chahinian H, Yahi N . Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents. 2020; 55(5):105960. PMC: 7128678. DOI: 10.1016/j.ijantimicag.2020.105960. View

3.
Rabie A, Abdalla M . Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study. Med Chem Res. 2023; 32(2):326-341. PMC: 9797896. DOI: 10.1007/s00044-022-02970-3. View

4.
Eltayb W, Abdalla M, Rabie A . Novel Investigational Anti-SARS-CoV-2 Agent Ensitrelvir "S-217622": A Very Promising Potential Universal Broad-Spectrum Antiviral at the Therapeutic Frontline of Coronavirus Species. ACS Omega. 2023; 8(6):5234-5246. PMC: 9897045. DOI: 10.1021/acsomega.2c03881. View

5.
Ganesan N, Baskaran R, Velmurugan B, Thanh N . Antrodia cinnamomea-An updated minireview of its bioactive components and biological activity. J Food Biochem. 2019; 43(8):e12936. DOI: 10.1111/jfbc.12936. View