6.
Gollihue J, Patel S, Eldahan K, Cox D, Donahue R, Taylor B
. Effects of Mitochondrial Transplantation on Bioenergetics, Cellular Incorporation, and Functional Recovery after Spinal Cord Injury. J Neurotrauma. 2018; 35(15):1800-1818.
PMC: 6053898.
DOI: 10.1089/neu.2017.5605.
View
7.
Konari N, Nagaishi K, Kikuchi S, Fujimiya M
. Mitochondria transfer from mesenchymal stem cells structurally and functionally repairs renal proximal tubular epithelial cells in diabetic nephropathy in vivo. Sci Rep. 2019; 9(1):5184.
PMC: 6435708.
DOI: 10.1038/s41598-019-40163-y.
View
8.
Moskowitzova K, Orfany A, Liu K, Ramirez-Barbieri G, Thedsanamoorthy J, Yao R
. Mitochondrial transplantation enhances murine lung viability and recovery after ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol. 2019; 318(1):L78-L88.
PMC: 6985877.
DOI: 10.1152/ajplung.00221.2019.
View
9.
McCully J, Cowan D, Pacak C, Toumpoulis I, Dayalan H, Levitsky S
. Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Physiol Heart Circ Physiol. 2008; 296(1):H94-H105.
PMC: 2637784.
DOI: 10.1152/ajpheart.00567.2008.
View
10.
Masuzawa A, Black K, Pacak C, Ericsson M, Barnett R, Drumm C
. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2013; 304(7):H966-82.
PMC: 3625892.
DOI: 10.1152/ajpheart.00883.2012.
View
11.
Huang P, Kuo C, Lee H, Shen C, Cheng F, Wu S
. Transferring Xenogenic Mitochondria Provides Neural Protection Against Ischemic Stress in Ischemic Rat Brains. Cell Transplant. 2015; 25(5):913-27.
DOI: 10.3727/096368915X689785.
View
12.
Hayashida K, Takegawa R, Endo Y, Yin T, Choudhary R, Aoki T
. Exogenous mitochondrial transplantation improves survival and neurological outcomes after resuscitation from cardiac arrest. BMC Med. 2023; 21(1):56.
PMC: 10018842.
DOI: 10.1186/s12916-023-02759-0.
View
13.
Cowan D, Yao R, Akurathi V, Snay E, Thedsanamoorthy J, Zurakowski D
. Intracoronary Delivery of Mitochondria to the Ischemic Heart for Cardioprotection. PLoS One. 2016; 11(8):e0160889.
PMC: 4976938.
DOI: 10.1371/journal.pone.0160889.
View
14.
Liu J, Li R, Yuan B, Wang J, Li Y, Huang C
. Mitochondria-targeting single-layered graphene quantum dots with dual recognition sites for ATP imaging in living cells. Nanoscale. 2018; 10(36):17402-17408.
DOI: 10.1039/c8nr06061d.
View
15.
Lv O, Tao Y, Qin Y, Chen C, Pan Y, Deng L
. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Mater Sci Eng C Mater Biol Appl. 2016; 67:478-485.
DOI: 10.1016/j.msec.2016.05.031.
View
16.
Lin Y, Chen Y, Tsai Y, Tseng S, Lin K
. In vivo imaging of neuroblastomas using GD2-targeting graphene quantum dots. J Pediatr Surg. 2021; 56(7):1227-1232.
DOI: 10.1016/j.jpedsurg.2021.03.035.
View
17.
Walton-Raaby M, Woods R, Kalyaanamoorthy S
. Investigating the Theranostic Potential of Graphene Quantum Dots in Alzheimer's Disease. Int J Mol Sci. 2023; 24(11).
PMC: 10253610.
DOI: 10.3390/ijms24119476.
View
18.
Choppadandi M, Guduru A, Gondaliya P, Arya N, Kalia K, Kumar H
. Structural features regulated photoluminescence intensity and cell internalization of carbon and graphene quantum dots for bioimaging. Mater Sci Eng C Mater Biol Appl. 2021; 129:112366.
DOI: 10.1016/j.msec.2021.112366.
View
19.
Fan Z, Nie Y, Wei Y, Zhao J, Liao X, Zhang J
. Facile and large-scale synthesis of graphene quantum dots for selective targeting and imaging of cell nucleus and mitochondria. Mater Sci Eng C Mater Biol Appl. 2019; 103:109824.
DOI: 10.1016/j.msec.2019.109824.
View
20.
Aizik G, Waiskopf N, Agbaria M, Levi-Kalisman Y, Banin U, Golomb G
. Delivery of Liposomal Quantum Dots via Monocytes for Imaging of Inflamed Tissue. ACS Nano. 2017; 11(3):3038-3051.
DOI: 10.1021/acsnano.7b00016.
View