» Articles » PMID: 37897346

Five Critical Quality Criteria for Artificial Intelligence-based Prediction Models

Overview
Journal Eur Heart J
Date 2023 Oct 28
PMID 37897346
Authors
Affiliations
Soon will be listed here.
Abstract

To raise the quality of clinical artificial intelligence (AI) prediction modelling studies in the cardiovascular health domain and thereby improve their impact and relevancy, the editors for digital health, innovation, and quality standards of the European Heart Journal propose five minimal quality criteria for AI-based prediction model development and validation studies: complete reporting, carefully defined intended use of the model, rigorous validation, large enough sample size, and openness of code and software.

Citing Articles

The Heart of Transformation: Exploring Artificial Intelligence in Cardiovascular Disease.

Chowdhury M, Rizk R, Chiu C, Zhang J, Scholl J, Bosch T Biomedicines. 2025; 13(2).

PMID: 40002840 PMC: 11852486. DOI: 10.3390/biomedicines13020427.


AI for IMPACTS Framework for Evaluating the Long-Term Real-World Impacts of AI-Powered Clinician Tools: Systematic Review and Narrative Synthesis.

Jacob C, Brasier N, Laurenzi E, Heuss S, Mougiakakou S, Coltekin A J Med Internet Res. 2025; 27:e67485.

PMID: 39909417 PMC: 11840377. DOI: 10.2196/67485.


Prediction of cardiovascular markers and diseases using retinal fundus images and deep learning: a systematic scoping review.

Li L, Isaksen A, Lebiecka-Johansen B, Funck K, Thambawita V, Byberg S Eur Heart J Digit Health. 2024; 5(6):660-669.

PMID: 39563905 PMC: 11570365. DOI: 10.1093/ehjdh/ztae068.


Prediction of incident atrial fibrillation using deep learning, clinical models, and polygenic scores.

Jabbour G, Nolin-Lapalme A, Tastet O, Corbin D, Jorda P, Sowa A Eur Heart J. 2024; 45(46):4920-4934.

PMID: 39217446 PMC: 11631091. DOI: 10.1093/eurheartj/ehae595.


Identification of avoidable patients at triage in a Paediatric Emergency Department: a decision support system using predictive analytics.

Viana J, Souza J, Rocha R, Santos A, Freitas A BMC Emerg Med. 2024; 24(1):149.

PMID: 39155373 PMC: 11331632. DOI: 10.1186/s12873-024-01029-3.


References
1.
Wessler B, Nelson J, Park J, McGinnes H, Gulati G, Brazil R . External Validations of Cardiovascular Clinical Prediction Models: A Large-Scale Review of the Literature. Circ Cardiovasc Qual Outcomes. 2021; 14(8):e007858. PMC: 8366535. DOI: 10.1161/CIRCOUTCOMES.121.007858. View

2.
Nakamura T, Sasano T . Artificial intelligence and cardiology: Current status and perspective. J Cardiol. 2021; 79(3):326-333. DOI: 10.1016/j.jjcc.2021.11.017. View

3.
. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J. 2021; 42(25):2439-2454. PMC: 8248998. DOI: 10.1093/eurheartj/ehab309. View

4.
Moons K, Kengne A, Grobbee D, Royston P, Vergouwe Y, Altman D . Risk prediction models: II. External validation, model updating, and impact assessment. Heart. 2012; 98(9):691-8. DOI: 10.1136/heartjnl-2011-301247. View

5.
Moons K, Altman D, Reitsma J, Ioannidis J, Macaskill P, Steyerberg E . Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015; 162(1):W1-73. DOI: 10.7326/M14-0698. View