Five Critical Quality Criteria for Artificial Intelligence-based Prediction Models
Overview
Affiliations
To raise the quality of clinical artificial intelligence (AI) prediction modelling studies in the cardiovascular health domain and thereby improve their impact and relevancy, the editors for digital health, innovation, and quality standards of the European Heart Journal propose five minimal quality criteria for AI-based prediction model development and validation studies: complete reporting, carefully defined intended use of the model, rigorous validation, large enough sample size, and openness of code and software.
The Heart of Transformation: Exploring Artificial Intelligence in Cardiovascular Disease.
Chowdhury M, Rizk R, Chiu C, Zhang J, Scholl J, Bosch T Biomedicines. 2025; 13(2).
PMID: 40002840 PMC: 11852486. DOI: 10.3390/biomedicines13020427.
Jacob C, Brasier N, Laurenzi E, Heuss S, Mougiakakou S, Coltekin A J Med Internet Res. 2025; 27:e67485.
PMID: 39909417 PMC: 11840377. DOI: 10.2196/67485.
Li L, Isaksen A, Lebiecka-Johansen B, Funck K, Thambawita V, Byberg S Eur Heart J Digit Health. 2024; 5(6):660-669.
PMID: 39563905 PMC: 11570365. DOI: 10.1093/ehjdh/ztae068.
Jabbour G, Nolin-Lapalme A, Tastet O, Corbin D, Jorda P, Sowa A Eur Heart J. 2024; 45(46):4920-4934.
PMID: 39217446 PMC: 11631091. DOI: 10.1093/eurheartj/ehae595.
Viana J, Souza J, Rocha R, Santos A, Freitas A BMC Emerg Med. 2024; 24(1):149.
PMID: 39155373 PMC: 11331632. DOI: 10.1186/s12873-024-01029-3.