» Articles » PMID: 37892883

Microwave Breast Sensing Via Deep Learning for Tumor Spatial Localization by Probability Maps

Overview
Date 2023 Oct 28
PMID 37892883
Authors
Affiliations
Soon will be listed here.
Abstract

Background: microwave imaging (MWI) has emerged as a promising modality for breast cancer screening, offering cost-effective, rapid, safe and comfortable exams. However, the practical application of MWI for tumor detection and localization is hampered by its inherent low resolution and low detection capability.

Methods: this study aims to generate an accurate tumor probability map directly from the scattering matrix. This direct conversion makes the probability map independent of specific image formation techniques and thus potentially complementary to any image formation technique. An approach based on a convolutional neural network (CNN) is used to convert the scattering matrix into a tumor probability map. The proposed deep learning model is trained using a large realistic numerical dataset of two-dimensional (2D) breast slices. The performance of the model is assessed through visual inspection and quantitative measures to assess the predictive quality at various levels of detail.

Results: the results demonstrate a remarkably high accuracy (0.9995) in classifying profiles as healthy or diseased, and exhibit the model's ability to accurately locate the core of a single tumor (within 0.9 cm for most cases).

Conclusion: overall, this research demonstrates that an approach based on neural networks (NN) for direct conversion from scattering matrices to tumor probability maps holds promise in advancing state-of-the-art tumor detection algorithms in the MWI domain.

References
1.
Wang L . Microwave Imaging and Sensing Techniques for Breast Cancer Detection. Micromachines (Basel). 2023; 14(7). PMC: 10385169. DOI: 10.3390/mi14071462. View

2.
AlSawaftah N, El-Abed S, Dhou S, Zakaria A . Microwave Imaging for Early Breast Cancer Detection: Current State, Challenges, and Future Directions. J Imaging. 2022; 8(5). PMC: 9143952. DOI: 10.3390/jimaging8050123. View

3.
Reimer T, Solis-Nepote M, Pistorius S . The Application of an Iterative Structure to the Delay-and-Sum and the Delay-Multiply-and-Sum Beamformers in Breast Microwave Imaging. Diagnostics (Basel). 2020; 10(6). PMC: 7345629. DOI: 10.3390/diagnostics10060411. View

4.
Ambrosanio M, Franceschini S, Pascazio V, Baselice F . An End-to-End Deep Learning Approach for Quantitative Microwave Breast Imaging in Real-Time Applications. Bioengineering (Basel). 2022; 9(11). PMC: 9687617. DOI: 10.3390/bioengineering9110651. View

5.
Cuccaro A, DellAversano A, Ruvio G, Browne J, Solimene R . Incoherent Radar Imaging for Breast Cancer Detection and Experimental Validation against 3D Multimodal Breast Phantoms. J Imaging. 2021; 7(2). PMC: 8321263. DOI: 10.3390/jimaging7020023. View