6.
Tu Z, Guday G, Adeli M, Haag R
. Multivalent Interactions between 2D Nanomaterials and Biointerfaces. Adv Mater. 2018; :e1706709.
DOI: 10.1002/adma.201706709.
View
7.
Li Y, Yuan H, von dem Bussche A, Creighton M, Hurt R, Kane A
. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci U S A. 2013; 110(30):12295-300.
PMC: 3725082.
DOI: 10.1073/pnas.1222276110.
View
8.
Yang K, Wan J, Zhang S, Zhang Y, Lee S, Liu Z
. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano. 2010; 5(1):516-22.
DOI: 10.1021/nn1024303.
View
9.
Rancan F, Volkmann H, Giulbudagian M, Schumacher F, Stanko J, Kleuser B
. Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels. Pharmaceutics. 2019; 11(8).
PMC: 6723892.
DOI: 10.3390/pharmaceutics11080394.
View
10.
Ou L, Song B, Liang H, Liu J, Feng X, Deng B
. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol. 2016; 13(1):57.
PMC: 5088662.
DOI: 10.1186/s12989-016-0168-y.
View
11.
Luo N, Weber J, Wang S, Luan B, Yue H, Xi X
. PEGylated graphene oxide elicits strong immunological responses despite surface passivation. Nat Commun. 2017; 8:14537.
PMC: 5333105.
DOI: 10.1038/ncomms14537.
View
12.
Kim K, Zhao Y, Jang H, Lee S, Kim J, Kim K
. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009; 457(7230):706-10.
DOI: 10.1038/nature07719.
View
13.
Yang K, Gong H, Shi X, Wan J, Zhang Y, Liu Z
. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials. 2013; 34(11):2787-95.
DOI: 10.1016/j.biomaterials.2013.01.001.
View
14.
Bani F, Bodaghi A, Dadkhah A, Movahedi S, Bodaghabadi N, Sadeghizadeh M
. One-pot exfoliation, functionalization, and size manipulation of graphene sheets: efficient system for biomedical applications. Lasers Med Sci. 2017; 33(4):795-802.
DOI: 10.1007/s10103-017-2422-4.
View
15.
Singh S, Singh M, Kulkarni P, Sonkar V, Gracio J, Dash D
. Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano. 2012; 6(3):2731-40.
DOI: 10.1021/nn300172t.
View
16.
Duch M, Budinger G, Liang Y, Soberanes S, Urich D, Chiarella S
. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 2011; 11(12):5201-7.
PMC: 3237757.
DOI: 10.1021/nl202515a.
View
17.
Schinwald A, Murphy F, Jones A, MacNee W, Donaldson K
. Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano. 2011; 6(1):736-46.
DOI: 10.1021/nn204229f.
View
18.
Gerecke C, Edlich A, Giulbudagian M, Schumacher F, Zhang N, Said A
. Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes. Nanotoxicology. 2017; 11(2):267-277.
DOI: 10.1080/17435390.2017.1292371.
View
19.
Chowdhury S, Kanakia S, Toussaint J, Frame M, Dewar A, Shroyer K
. In vitro hematological and in vivo vasoactivity assessment of dextran functionalized graphene. Sci Rep. 2013; 3:2584.
PMC: 3761081.
DOI: 10.1038/srep02584.
View
20.
Sosa S, Tubaro A, Carlin M, Ponti C, Vazquez E, Prato M
. Assessment of skin sensitization properties of few-layer graphene and graphene oxide through the Local Lymph Node Assay (OECD TG 442B). NanoImpact. 2022; 29:100448.
DOI: 10.1016/j.impact.2022.100448.
View