6.
Winegarner A, Wakabayashi T, Hara-Ueno C, Sato T, Busch C, Fukushima Y
. RETINAL MICROVASCULATURE AND VISUAL ACUITY AFTER INTRAVITREAL AFLIBERCEPT IN EYES WITH CENTRAL RETINAL VEIN OCCLUSION: An Optical Coherence Tomography Angiography Study. Retina. 2017; 38(10):2067-2072.
DOI: 10.1097/IAE.0000000000001828.
View
7.
Wu J, Moghimi S, Nishida T, Mahmoudinezhad G, Zangwill L, Weinreb R
. Association of macular vessel density and ganglion cell complex thickness with central visual field progression in glaucoma. Br J Ophthalmol. 2022; 107(12):1828-1833.
PMC: 10033463.
DOI: 10.1136/bjo-2022-321870.
View
8.
Nishida T, Oh W, Moghimi S, Yarmohammadi A, Hou H, David R
. Central macular OCTA parameters in glaucoma. Br J Ophthalmol. 2021; 107(2):207-214.
PMC: 9368252.
DOI: 10.1136/bjophthalmol-2021-319574.
View
9.
Zhang X, Dastiridou A, Francis B, Tan O, Varma R, Greenfield D
. Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field. Am J Ophthalmol. 2017; 184:63-74.
PMC: 5894829.
DOI: 10.1016/j.ajo.2017.09.020.
View
10.
Sung K, Wollstein G, Bilonick R, Townsend K, Ishikawa H, Kagemann L
. Effects of age on optical coherence tomography measurements of healthy retinal nerve fiber layer, macula, and optic nerve head. Ophthalmology. 2009; 116(6):1119-24.
PMC: 2747246.
DOI: 10.1016/j.ophtha.2009.01.004.
View
11.
Wu Z, Medeiros F
. Comparison of Visual Field Point-Wise Event-Based and Global Trend-Based Analysis for Detecting Glaucomatous Progression. Transl Vis Sci Technol. 2018; 7(4):20.
PMC: 6111742.
DOI: 10.1167/tvst.7.4.20.
View
12.
Choi J, Kwon J, Shin J, Lee J, Lee S, Kook M
. Quantitative optical coherence tomography angiography of macular vascular structure and foveal avascular zone in glaucoma. PLoS One. 2017; 12(9):e0184948.
PMC: 5608222.
DOI: 10.1371/journal.pone.0184948.
View
13.
Rabiolo A, Morales E, Mohamed L, Capistrano V, Kim J, Afifi A
. Comparison of Methods to Detect and Measure Glaucomatous Visual Field Progression. Transl Vis Sci Technol. 2019; 8(5):2.
PMC: 6748341.
DOI: 10.1167/tvst.8.5.2.
View
14.
Penteado R, Zangwill L, Daga F, Saunders L, Manalastas P, Shoji T
. Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma. J Glaucoma. 2018; 27(6):481-489.
PMC: 5986603.
DOI: 10.1097/IJG.0000000000000964.
View
15.
Jeon S, Shin D, Park H, Park C
. Association of Retinal Blood Flow with Progression of Visual Field in Glaucoma. Sci Rep. 2019; 9(1):16813.
PMC: 6856104.
DOI: 10.1038/s41598-019-53354-4.
View
16.
Yow A, Tan B, Chua J, Husain R, Schmetterer L, Wong D
. Segregation of neuronal-vascular components in a retinal nerve fiber layer for thickness measurement using OCT and OCT angiography. Biomed Opt Express. 2021; 12(6):3228-3240.
PMC: 8221930.
DOI: 10.1364/BOE.420507.
View
17.
Flower R, Peiretti E, Magnani M, Rossi L, Serafini S, Gryczynski Z
. Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells. Invest Ophthalmol Vis Sci. 2008; 49(12):5510-6.
DOI: 10.1167/iovs.07-1504.
View
18.
Kang J, Park B, Cho B
. Comparison of risk factors for initial central scotoma versus initial peripheral scotoma in normal-tension glaucoma. Korean J Ophthalmol. 2015; 29(2):102-8.
PMC: 4369511.
DOI: 10.3341/kjo.2015.29.2.102.
View
19.
Lee E, Kim T, Kim J, Kim J
. Central Visual Field Damage and Parapapillary Choroidal Microvasculature Dropout in Primary Open-Angle Glaucoma. Ophthalmology. 2017; 125(4):588-596.
DOI: 10.1016/j.ophtha.2017.10.036.
View
20.
Kwon J, Choi J, Shin J, Lee J, Kook M
. An Optical Coherence Tomography Angiography Study of the Relationship Between Foveal Avascular Zone Size and Retinal Vessel Density. Invest Ophthalmol Vis Sci. 2018; 59(10):4143-4153.
DOI: 10.1167/iovs.18-24168.
View