» Articles » PMID: 37862640

Mitigating Quantum Decoherence in Force Sensors by Internal Squeezing

Overview
Journal Phys Rev Lett
Specialty Biophysics
Date 2023 Oct 20
PMID 37862640
Authors
Affiliations
Soon will be listed here.
Abstract

The most efficient approach to laser interferometric force sensing to date uses monochromatic carrier light with its signal sideband spectrum in a squeezed vacuum state. Quantum decoherence, i.e., mixing with an ordinary vacuum state due to optical losses, is the main sensitivity limit. In this Letter, we present both theoretical and experimental evidence that quantum decoherence in high-precision laser interferometric force sensors enhanced with optical cavities and squeezed light injection can be mitigated by a quantum squeeze operation inside the sensor's cavity. Our experiment shows an enhanced measurement sensitivity that is independent of the optical readout loss in a wide range. Our results pave the way for quantum improvements in scenarios where high decoherence previously precluded the use of squeezed light. Our results hold significant potential for advancing the field of quantum sensors and enabling new experimental approaches in high-precision measurement technology.