General, Open-source Vertex Modeling in Biological Applications Using Tissue Forge
Affiliations
Vertex models are a widespread approach for describing the biophysics and behaviors of multicellular systems, especially of epithelial tissues. Vertex models describe a wide variety of developmental scenarios and behaviors like cell rearrangement and tissue folding. Often, these models are implemented as single-use or closed-source software, which inhibits reproducibility and decreases accessibility for researchers with limited proficiency in software development and numerical methods. We developed a physics-based vertex model methodology in Tissue Forge, an open-source, particle-based modeling and simulation environment. Our methodology describes the properties and processes of vertex model objects on the basis of vertices, which allows integration of vertex modeling with the particle-based formalism of Tissue Forge, enabling an environment for developing mixed-method models of multicellular systems. Our methodology in Tissue Forge inherits all features provided by Tissue Forge, delivering open-source, extensible vertex modeling with interactive simulation, real-time simulation visualization and model sharing in the C, C++ and Python programming languages and a Jupyter Notebook. Demonstrations show a vertex model of cell sorting and a mixed-method model of cell migration combining vertex- and particle-based models. Our methodology provides accessible vertex modeling for a broad range of scientific disciplines, and we welcome community-developed contributions to our open-source software implementation.
Cell-Level Modelling of Homeostasis in Confined Epithelial Monolayers.
Chaithanya K, Rozman J, Kosmrlj A, Sknepnek R J Elast. 2025; 157(2):29.
PMID: 40013236 PMC: 11850549. DOI: 10.1007/s10659-025-10120-0.
Tissue Forge: Interactive biological and biophysics simulation environment.
Sego T, Sluka J, Sauro H, Glazier J PLoS Comput Biol. 2023; 19(10):e1010768.
PMID: 37871133 PMC: 10621971. DOI: 10.1371/journal.pcbi.1010768.