» Articles » PMID: 37850560

Closing the Loop: Autonomous Experiments Enabled by Machine-learning-based Online Data Analysis in Synchrotron Beamline Environments

Abstract

Recently, there has been significant interest in applying machine-learning (ML) techniques to the automated analysis of X-ray scattering experiments, due to the increasing speed and size at which datasets are generated. ML-based analysis presents an important opportunity to establish a closed-loop feedback system, enabling monitoring and real-time decision-making based on online data analysis. In this study, the incorporation of a combined one-dimensional convolutional neural network (CNN) and multilayer perceptron that is trained to extract physical thin-film parameters (thickness, density, roughness) and capable of taking into account prior knowledge is described. ML-based online analysis results are processed in a closed-loop workflow for X-ray reflectometry (XRR), using the growth of organic thin films as an example. Our focus lies on the beamline integration of ML-based online data analysis and closed-loop feedback. Our data demonstrate the accuracy and robustness of ML methods for analyzing XRR curves and Bragg reflections and its autonomous control over a vacuum deposition setup.

Citing Articles

Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge.

Munteanu V, Starostin V, Greco A, Pithan L, Gerlach A, Hinderhofer A J Appl Crystallogr. 2024; 57(Pt 2):456-469.

PMID: 38596736 PMC: 11001411. DOI: 10.1107/S1600576724002115.


Millisecond X-ray reflectometry and neural network analysis: unveiling fast processes in spin coating.

Schumi-Marecek D, Bertram F, Mikulik P, Varshney D, Novak J, Kowarik S J Appl Crystallogr. 2024; 57(Pt 2):314-323.

PMID: 38596729 PMC: 11001405. DOI: 10.1107/S1600576724001171.


Deep learning at the edge enables real-time streaming ptychographic imaging.

Babu A, Zhou T, Kandel S, Bicer T, Liu Z, Judge W Nat Commun. 2023; 14(1):7059.

PMID: 37923741 PMC: 10624836. DOI: 10.1038/s41467-023-41496-z.

References
1.
Teixeira Parente M, Brandl G, Franz C, Stuhr U, Ganeva M, Schneidewind A . Active learning-assisted neutron spectroscopy with log-Gaussian processes. Nat Commun. 2023; 14(1):2246. PMC: 10115805. DOI: 10.1038/s41467-023-37418-8. View

2.
Scheffler M, Aeschlimann M, Albrecht M, Bereau T, Bungartz H, Felser C . FAIR data enabling new horizons for materials research. Nature. 2022; 604(7907):635-642. DOI: 10.1038/s41586-022-04501-x. View

3.
Konnecke M, Akeroyd F, Bernstein H, Brewster A, Campbell S, Clausen B . The NeXus data format. J Appl Crystallogr. 2015; 48(Pt 1):301-305. PMC: 4453170. DOI: 10.1107/S1600576714027575. View

4.
Kusne A, Yu H, Wu C, Zhang H, Hattrick-Simpers J, DeCost B . On-the-fly closed-loop materials discovery via Bayesian active learning. Nat Commun. 2020; 11(1):5966. PMC: 7686338. DOI: 10.1038/s41467-020-19597-w. View

5.
Suzuki Y, Hino H, Hawai T, Saito K, Kotsugi M, Ono K . Symmetry prediction and knowledge discovery from X-ray diffraction patterns using an interpretable machine learning approach. Sci Rep. 2020; 10(1):21790. PMC: 7732852. DOI: 10.1038/s41598-020-77474-4. View