» Articles » PMID: 37848411

Visible-to-mid-IR Tunable Frequency Comb in Nanophotonics

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Oct 17
PMID 37848411
Authors
Affiliations
Soon will be listed here.
Abstract

Optical frequency comb is an enabling technology for a multitude of applications from metrology to ranging and communications. The tremendous progress in sources of optical frequency combs has mostly been centered around the near-infrared spectral region, while many applications demand sources in the visible and mid-infrared, which have so far been challenging to achieve, especially in nanophotonics. Here, we report widely tunable frequency comb generation using optical parametric oscillators in lithium niobate nanophotonics. We demonstrate sub-picosecond frequency combs tunable beyond an octave extending from 1.5 up to 3.3 μm with femtojoule-level thresholds on a single chip. We utilize the up-conversion of the infrared combs to generate visible frequency combs reaching 620 nm on the same chip. The ultra-broadband tunability and visible-to-mid-infrared spectral coverage of our source highlight a practical and universal path for the realization of efficient frequency comb sources in nanophotonics, overcoming their spectral sparsity.

Citing Articles

Ultraviolet astronomical spectrograph calibration with laser frequency combs from nanophotonic lithium niobate waveguides.

Ludwig M, Ayhan F, Schmidt T, Wildi T, Voumard T, Blum R Nat Commun. 2024; 15(1):7614.

PMID: 39223131 PMC: 11369296. DOI: 10.1038/s41467-024-51560-x.


Wafer-Scale Periodic Poling of Thin-Film Lithium Niobate.

Chen M, Wang C, Tian X, Tang J, Gu X, Qian G Materials (Basel). 2024; 17(8).

PMID: 38673078 PMC: 11051387. DOI: 10.3390/ma17081720.


Mid-infrared cross-comb spectroscopy.

Liu M, Gray R, Costa L, Markus C, Roy A, Marandi A Nat Commun. 2023; 14(1):1044.

PMID: 36828826 PMC: 9957991. DOI: 10.1038/s41467-023-36811-7.

References
1.
Diddams S, Vahala K, Udem T . Optical frequency combs: Coherently uniting the electromagnetic spectrum. Science. 2020; 369(6501). DOI: 10.1126/science.aay3676. View

2.
Kippenberg T, Gaeta A, Lipson M, Gorodetsky M . Dissipative Kerr solitons in optical microresonators. Science. 2018; 361(6402). DOI: 10.1126/science.aan8083. View

3.
Marin-Palomo P, Kemal J, Karpov M, Kordts A, Pfeifle J, Pfeiffer M . Microresonator-based solitons for massively parallel coherent optical communications. Nature. 2017; 546(7657):274-279. DOI: 10.1038/nature22387. View

4.
Xu X, Tan M, Corcoran B, Wu J, Boes A, Nguyen T . 11 TOPS photonic convolutional accelerator for optical neural networks. Nature. 2021; 589(7840):44-51. DOI: 10.1038/s41586-020-03063-0. View

5.
Stern L, Stone J, Kang S, Cole D, Suh M, Fredrick C . Direct Kerr frequency comb atomic spectroscopy and stabilization. Sci Adv. 2020; 6(9):eaax6230. PMC: 7048413. DOI: 10.1126/sciadv.aax6230. View