» Articles » PMID: 37845224

A Human Lung Alveolus-on-a-chip Model of Acute Radiation-induced Lung Injury

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Oct 16
PMID 37845224
Authors
Affiliations
Soon will be listed here.
Abstract

Acute exposure to high-dose gamma radiation due to radiological disasters or cancer radiotherapy can result in radiation-induced lung injury (RILI), characterized by acute pneumonitis and subsequent lung fibrosis. A microfluidic organ-on-a-chip lined by human lung alveolar epithelium interfaced with pulmonary endothelium (Lung Alveolus Chip) is used to model acute RILI in vitro. Both lung epithelium and endothelium exhibit DNA damage, cellular hypertrophy, upregulation of inflammatory cytokines, and loss of barrier function within 6 h of radiation exposure, although greater damage is observed in the endothelium. The radiation dose sensitivity observed on-chip is more like the human lung than animal preclinical models. The Alveolus Chip is also used to evaluate the potential ability of two drugs - lovastatin and prednisolone - to suppress the effects of acute RILI. These data demonstrate that the Lung Alveolus Chip provides a human relevant alternative for studying the molecular basis of acute RILI and may be useful for evaluation of new radiation countermeasure therapeutics.

Citing Articles

Radiation-induced lung injury: from mechanism to prognosis and drug therapy.

Wang S, Xu D, Xiao L, Liu B, Yuan X Radiat Oncol. 2025; 20(1):39.

PMID: 40082925 PMC: 11907960. DOI: 10.1186/s13014-025-02617-8.


FlaA N/C attenuates radiation-induced lung injury by promoting NAIP/NLRC4/ASC inflammasome autophagy and inhibiting pyroptosis.

Deng S, Yang Y, He S, Chen Z, Xia X, Zhang T J Transl Med. 2025; 23(1):237.

PMID: 40016828 PMC: 11869748. DOI: 10.1186/s12967-025-06257-0.


Effect of FLASH proton therapy on primary bronchial epithelial cell organoids.

Kuipers M, van Liefferinge F, van der Wal E, Rovituso M, Slats A, Hiemstra P Clin Transl Radiat Oncol. 2025; 52:100927.

PMID: 39968050 PMC: 11833640. DOI: 10.1016/j.ctro.2025.100927.


The interplay between RNA m6A modification and radiation biology of cancerous and non-cancerous tissues: a narrative review.

Cheng Y, Shang Y, Zhang S, Fan S Cancer Biol Med. 2025; 21(12.

PMID: 39831771 PMC: 11745087. DOI: 10.20892/j.issn.2095-3941.2024.0415.


Radiation decreases bronchial epithelial progenitor function as assessed by organoid formation.

Kuipers M, Ninaber D, Van Doorn-Wink K, Slats A, Hiemstra P Respir Res. 2025; 26(1):20.

PMID: 39827355 PMC: 11742509. DOI: 10.1186/s12931-025-03105-z.


References
1.
Hassell B, Goyal G, Lee E, Sontheimer-Phelps A, Levy O, Chen C . Human Organ Chip Models Recapitulate Orthotopic Lung Cancer Growth, Therapeutic Responses, and Tumor Dormancy In Vitro. Cell Rep. 2017; 21(2):508-516. DOI: 10.1016/j.celrep.2017.09.043. View

2.
Huh D, Hamilton G, Ingber D . From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011; 21(12):745-54. PMC: 4386065. DOI: 10.1016/j.tcb.2011.09.005. View

3.
Dabjan M, Buck C, Jackson I, Vujaskovic Z, Marples B, Down J . A survey of changing trends in modelling radiation lung injury in mice: bringing out the good, the bad, and the uncertain. Lab Invest. 2016; 96(9):936-49. DOI: 10.1038/labinvest.2016.76. View

4.
Huang W, Yu J, Jones J, Carter C, Jackson I, Vujaskovic Z . Acute Proteomic Changes in the Lung After WTLI in a Mouse Model: Identification of Potential Initiating Events for Delayed Effects of Acute Radiation Exposure. Health Phys. 2019; 116(4):503-515. PMC: 6384149. DOI: 10.1097/HP.0000000000000956. View

5.
Bledsoe T, Nath S, Decker R . Radiation Pneumonitis. Clin Chest Med. 2017; 38(2):201-208. DOI: 10.1016/j.ccm.2016.12.004. View