» Articles » PMID: 37839584

Macrophage Phenotype Transitions in a Stochastic Gene-regulatory Network Model

Overview
Journal J Theor Biol
Publisher Elsevier
Specialty Biology
Date 2023 Oct 15
PMID 37839584
Authors
Affiliations
Soon will be listed here.
Abstract

Polarization is the process by which a macrophage cell commits to a phenotype based on external signal stimulation. To know how this process is affected by random fluctuations and events within a cell is of utmost importance to better understand the underlying dynamics and predict possible phenotype transitions. For this purpose, we develop a stochastic modeling approach for the macrophage polarization process. We classify phenotype states using the Robust Perron Cluster Analysis and quantify transition pathways and probabilities by applying Transition Path Theory. Depending on the model parameters, we identify four bistable and one tristable phenotype configuration. We find that bistable transitions are fast but their states less robust. In contrast, phenotype transitions in the tristable situation have a comparatively long time duration, which reflects the robustness of the states. The results indicate parallels in the overall transition behavior of macrophage cells with other heterogeneous and plastic cell types, such as cancer cells. Our approach allows for a probabilistic interpretation of macrophage phenotype transitions and biological inference on phenotype robustness. In general, the methodology can easily be adapted to other systems where random state switches are known to occur.

Citing Articles

The Role of Human and Animal Monocytes and Macrophages in Homeostasis and Disease.

Kloc M, Kubiak J Int J Mol Sci. 2023; 24(22).

PMID: 38003587 PMC: 10671400. DOI: 10.3390/ijms242216397.