» Articles » PMID: 37838731

Fast and Versatile Electrostatic Disc Microprinting for Piezoelectric Elements

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Oct 14
PMID 37838731
Authors
Affiliations
Soon will be listed here.
Abstract

Nanoparticles, films, and patterns are three critical piezoelectric elements with widespread applications in sensing, actuations, catalysis and energy harvesting. High productivity and large-area fabrication of these functional elements is still a significant challenge, let alone the control of their structures and feature sizes on various substrates. Here, we report a fast and versatile electrostatic disc microprinting, enabled by triggering the instability of liquid-air interface of inks. The printing process allows for fabricating lead zirconate titanate free-standing nanoparticles, films, and micro-patterns. The as-fabricated lead zirconate titanate films exhibit a high piezoelectric strain constant of 560 pm V, one to two times higher than the state-of-the-art. The multiplexed tip jetting mode and the large layer-by-layer depositing area can translate into depositing speeds up to 10 μm s, one order of magnitude faster than current techniques. Printing diversified functional materials, ranging from suspensions of dielectric ceramic and metal nanoparticles, to insulating polymers, to solutions of biological molecules, demonstrates the great potential of the electrostatic disc microprinting in electronics, biotechnology and beyond.

Citing Articles

Emerging Piezoelectric Metamaterials for Biomedical Applications.

Yan Z, Tran H, Ma D, Xie J Mater Interfaces. 2025; 1(1):13-34.

PMID: 40046679 PMC: 11882151. DOI: 10.53941/mi.2024.100004.


Graphene-Doped Piezoelectric Transducers by Kriging Optimal Model for Detecting Various Types of Laryngeal Movements.

Lee M, Pan C, Juan S, Wen Z, Xu J, Janesha U Micromachines (Basel). 2024; 15(10).

PMID: 39459087 PMC: 11509151. DOI: 10.3390/mi15101213.


One-step high-speed thermal-electric aerosol printing of piezoelectric bio-organic films for wirelessly powering bioelectronics.

Li X, Zhang Z, Zheng Y, Liao J, Peng Z, Li P Sci Adv. 2024; 10(43):eadq3195.

PMID: 39453993 PMC: 11506135. DOI: 10.1126/sciadv.adq3195.


Flexible Electronics: Advancements and Applications of Flexible Piezoelectric Composites in Modern Sensing Technologies.

Zhang J, Wang J, Zhong C, Zhang Y, Qiu Y, Qin L Micromachines (Basel). 2024; 15(8).

PMID: 39203633 PMC: 11356236. DOI: 10.3390/mi15080982.

References
1.
Zhang T, Liang H, Wang Z, Qiu C, Peng Y, Zhu X . Piezoelectric ultrasound energy-harvesting device for deep brain stimulation and analgesia applications. Sci Adv. 2022; 8(15):eabk0159. PMC: 9012468. DOI: 10.1126/sciadv.abk0159. View

2.
Choi Y, Yun T, Qaiser N, Paik H, Roh H, Hong J . Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays. Sci Rep. 2015; 5:10728. PMC: 4455118. DOI: 10.1038/srep10728. View

3.
Wang Z, Cao D, Wen L, Xu R, Obergfell M, Mi Y . Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications. Nat Commun. 2016; 7:10348. PMC: 4729958. DOI: 10.1038/ncomms10348. View

4.
Onses M, Sutanto E, Ferreira P, Alleyne A, Rogers J . Mechanisms, Capabilities, and Applications of High-Resolution Electrohydrodynamic Jet Printing. Small. 2015; 11(34):4237-66. DOI: 10.1002/smll.201500593. View

5.
Wang H, Hong S, Han J, Jung Y, Jeong H, Im T . Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci Adv. 2021; 7(7). PMC: 7880591. DOI: 10.1126/sciadv.abe5683. View