Fusang: a Framework for Phylogenetic Tree Inference Via Deep Learning
Overview
Authors
Affiliations
Phylogenetic tree inference is a classic fundamental task in evolutionary biology that entails inferring the evolutionary relationship of targets based on multiple sequence alignment (MSA). Maximum likelihood (ML) and Bayesian inference (BI) methods have dominated phylogenetic tree inference for many years, but BI is too slow to handle a large number of sequences. Recently, deep learning (DL) has been successfully applied to quartet phylogenetic tree inference and tentatively extended into more sequences with the quartet puzzling algorithm. However, no DL-based tools are immediately available for practical real-world applications. In this paper, we propose Fusang (http://fusang.cibr.ac.cn), a DL-based framework that achieves comparable performance to that of ML-based tools with both simulated and real datasets. More importantly, with continuous optimization, e.g. through the use of customized training datasets for real-world scenarios, Fusang has great potential to outperform ML-based tools.
Insertions and Deletions: Computational Methods, Evolutionary Dynamics, and Biological Applications.
Redelings B, Holmes I, Lunter G, Pupko T, Anisimova M Mol Biol Evol. 2024; 41(9).
PMID: 39172750 PMC: 11385596. DOI: 10.1093/molbev/msae177.
The Tree Reconstruction Game: Phylogenetic Reconstruction Using Reinforcement Learning.
Azouri D, Granit O, Alburquerque M, Mansour Y, Pupko T, Mayrose I Mol Biol Evol. 2024; 41(6).
PMID: 38829798 PMC: 11180600. DOI: 10.1093/molbev/msae105.
Common Methods for Phylogenetic Tree Construction and Their Implementation in R.
Zou Y, Zhang Z, Zeng Y, Hu H, Hao Y, Huang S Bioengineering (Basel). 2024; 11(5).
PMID: 38790347 PMC: 11117635. DOI: 10.3390/bioengineering11050480.