6.
Chen L, Lu W, Wang L, Xing X, Chen Z, Teng X
. Metabolite discovery through global annotation of untargeted metabolomics data. Nat Methods. 2021; 18(11):1377-1385.
PMC: 8733904.
DOI: 10.1038/s41592-021-01303-3.
View
7.
Collee J, Mawet M, Tebache L, Nisolle M, Brichant G
. Polycystic ovarian syndrome and infertility: overview and insights of the putative treatments. Gynecol Endocrinol. 2021; 37(10):869-874.
DOI: 10.1080/09513590.2021.1958310.
View
8.
Cuny H, Rapadas M, Gereis J, Martin E, Kirk R, Shi H
. NAD deficiency due to environmental factors or gene-environment interactions causes congenital malformations and miscarriage in mice. Proc Natl Acad Sci U S A. 2020; 117(7):3738-3747.
PMC: 7035598.
DOI: 10.1073/pnas.1916588117.
View
9.
Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau-Jonard S
. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update. 2016; 22(6):709-724.
DOI: 10.1093/humupd/dmw027.
View
10.
Du M, Zhang J, Yu X, Guan Y
. Elevated Anti-Müllerian Hormone Is an Independent Risk Factor for Preterm Birth Among Patients With Overweight Polycystic Ovary Syndrome. Front Endocrinol (Lausanne). 2021; 12:788000.
PMC: 8692368.
DOI: 10.3389/fendo.2021.788000.
View
11.
Dube F, Amireault P
. Local serotonergic signaling in mammalian follicles, oocytes and early embryos. Life Sci. 2007; 81(25-26):1627-37.
DOI: 10.1016/j.lfs.2007.09.034.
View
12.
Dumesic D, Meldrum D, Katz-Jaffe M, Krisher R, Schoolcraft W
. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2014; 103(2):303-16.
DOI: 10.1016/j.fertnstert.2014.11.015.
View
13.
Ellakwa H, Sanad Z, Hamza H, Emara M, Elsayed M
. Predictors of patient responses to ovulation induction with clomiphene citrate in patients with polycystic ovary syndrome experiencing infertility. Int J Gynaecol Obstet. 2016; 133(1):59-63.
DOI: 10.1016/j.ijgo.2015.09.008.
View
14.
Gaikwad N
. Bileome: The bile acid metabolome of rat. Biochem Biophys Res Commun. 2020; 533(3):458-466.
DOI: 10.1016/j.bbrc.2020.06.052.
View
15.
Glendining K, Campbell R
. Recent advances in emerging PCOS therapies. Curr Opin Pharmacol. 2023; 68:102345.
DOI: 10.1016/j.coph.2022.102345.
View
16.
Guan S, Liu Y, Guo Y, Shen X, Liu Y, Jin H
. Potential biomarkers for clinical outcomes of IVF cycles in women with/without PCOS: Searching with metabolomics. Front Endocrinol (Lausanne). 2022; 13:982200.
PMC: 9478024.
DOI: 10.3389/fendo.2022.982200.
View
17.
Hou E, Zhao Y, Hang J, Qiao J
. Metabolomics and correlation network analysis of follicular fluid reveals associations between l-tryptophan, l-tyrosine and polycystic ovary syndrome. Biomed Chromatogr. 2020; 35(3):e4993.
DOI: 10.1002/bmc.4993.
View
18.
Jakubowicz D, Barnea M, Wainstein J, Froy O
. Effects of caloric intake timing on insulin resistance and hyperandrogenism in lean women with polycystic ovary syndrome. Clin Sci (Lond). 2013; 125(9):423-32.
DOI: 10.1042/CS20130071.
View
19.
Jovanovic F, Sudhakar A, Knezevic N
. The Kynurenine Pathway and Polycystic Ovary Syndrome: Inflammation as a Common Denominator. Int J Tryptophan Res. 2022; 15:11786469221099214.
PMC: 9128055.
DOI: 10.1177/11786469221099214.
View
20.
Keefe C, Goldman M, Zhang K, Clarke N, Reitz R, Welt C
. Simultaneous measurement of thirteen steroid hormones in women with polycystic ovary syndrome and control women using liquid chromatography-tandem mass spectrometry. PLoS One. 2014; 9(4):e93805.
PMC: 3979722.
DOI: 10.1371/journal.pone.0093805.
View