6.
Zhao S, Ye Z, Stanton R
. Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA. 2020; 26(8):903-909.
PMC: 7373998.
DOI: 10.1261/rna.074922.120.
View
7.
Huang A, Zheng H, Wu Z, Chen M, Huang Y
. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics. 2020; 10(8):3503-3517.
PMC: 7069073.
DOI: 10.7150/thno.42174.
View
8.
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A
. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013; 495(7441):333-8.
DOI: 10.1038/nature11928.
View
9.
Chen X, Jiang C, Sun R, Yang D, Liu Q
. Circular Noncoding RNA NR3C1 Acts as a miR-382-5p Sponge to Protect RPE Functions via Regulating PTEN/AKT/mTOR Signaling Pathway. Mol Ther. 2020; 28(3):929-945.
PMC: 7054734.
DOI: 10.1016/j.ymthe.2020.01.010.
View
10.
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S
. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013; 14(4):R36.
PMC: 4053844.
DOI: 10.1186/gb-2013-14-4-r36.
View
11.
Kristensen L, Andersen M, Stagsted L, Ebbesen K, Hansen T, Kjems J
. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019; 20(11):675-691.
DOI: 10.1038/s41576-019-0158-7.
View
12.
Wu Z, Liu B, Ma Y, Chen H, Wu J, Wang J
. Discovery and validation of hsa_circ_0001953 as a potential biomarker for proliferative diabetic retinopathy in human blood. Acta Ophthalmol. 2020; 99(3):306-313.
DOI: 10.1111/aos.14585.
View
13.
Kuznetsova I, Siira S, Shearwood A, Ermer J, Filipovska A, Rackham O
. Simultaneous processing and degradation of mitochondrial RNAs revealed by circularized RNA sequencing. Nucleic Acids Res. 2017; 45(9):5487-5500.
PMC: 5435911.
DOI: 10.1093/nar/gkx104.
View
14.
Song X, Du R, Gui H, Zhou M, Zhong W, Mao C
. Identification of potential hub genes related to the progression and prognosis of hepatocellular carcinoma through integrated bioinformatics analysis. Oncol Rep. 2019; 43(1):133-146.
PMC: 6908929.
DOI: 10.3892/or.2019.7400.
View
15.
Luo Q, Xue W, Yuan Y, Fu C, He J, Zou H
. Peripheral anterior chamber depth and screening techniques for primary angle closure disease in community elderly Chinese. BMC Ophthalmol. 2020; 20(1):353.
PMC: 7456037.
DOI: 10.1186/s12886-020-01618-3.
View
16.
You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G
. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci. 2015; 18(4):603-610.
PMC: 4376664.
DOI: 10.1038/nn.3975.
View
17.
Wen G, Zhou T, Gu W
. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell. 2020; 12(12):911-946.
PMC: 8674396.
DOI: 10.1007/s13238-020-00799-3.
View
18.
Roberti G, Oddone F, Agnifili L, Katsanos A, Michelessi M, Mastropasqua L
. Steroid-induced glaucoma: Epidemiology, pathophysiology, and clinical management. Surv Ophthalmol. 2020; 65(4):458-472.
DOI: 10.1016/j.survophthal.2020.01.002.
View
19.
Kristensen L, Hansen T, Veno M, Kjems J
. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene. 2017; 37(5):555-565.
PMC: 5799710.
DOI: 10.1038/onc.2017.361.
View
20.
Moazzeni H, Khani M, Elahi E
. Insights into the regulatory molecules involved in glaucoma pathogenesis. Am J Med Genet C Semin Med Genet. 2020; 184(3):782-827.
DOI: 10.1002/ajmg.c.31833.
View