» Articles » PMID: 37795964

The Influence of Microbiota on Ferroptosis in Intestinal Diseases

Overview
Journal Gut Microbes
Date 2023 Oct 5
PMID 37795964
Authors
Affiliations
Soon will be listed here.
Abstract

Ferroptosis is a distinctive form of iron-dependent necrotic cell death, characterized by excessive lipid peroxidation on cellular membranes and compromised cellular antioxidant defenses. Multiple metabolic pathways, including iron and lipid metabolism, as well as antioxidant systems, contribute to the execution of ferroptosis. The gut microbiota exerts regulatory effects on ferroptosis through its microbial composition, biological functions, and metabolites. Notably, most pathogenic bacteria tend to promote ferroptosis, thereby inducing or exacerbating diseases, while most probiotics have been shown to protect against cell death. Given microbiota colonization in the gut, an intimate association is found between intestinal diseases and microbiota. This review consolidates the essential aspects of ferroptotic processes, emphasizing key molecules and delineating the intricate interplay between gut microbiota and ferroptosis. Moreover, this review underscores the potential utility of gut microbiota modulation in regulating ferroptosis for the treatment of intestinal diseases.

Citing Articles

Gut Microbiota at the Crossroad of Hepatic Oxidative Stress and MASLD.

Termite F, Archilei S, DAmbrosio F, Petrucci L, Viceconti N, Iaccarino R Antioxidants (Basel). 2025; 14(1).

PMID: 39857390 PMC: 11759774. DOI: 10.3390/antiox14010056.


Gut microbiota in health and disease: advances and future prospects.

Zhang Y, Wang H, Sang Y, Liu M, Wang Q, Yang H MedComm (2020). 2024; 5(12):e70012.

PMID: 39568773 PMC: 11577303. DOI: 10.1002/mco2.70012.


Age over sex: evaluating gut microbiota differences in healthy Chinese populations.

Wu J, Shen H, Lv Y, He J, Xie X, Xu Z Front Microbiol. 2024; 15:1412991.

PMID: 38974029 PMC: 11224521. DOI: 10.3389/fmicb.2024.1412991.


Iron toxicity, ferroptosis and microbiota in Parkinson's disease: Implications for novel targets.

Carvalho F, Landis H, Getachew B, Silva V, Ribeiro P, Aschner M Adv Neurotoxicol. 2024; 11:105-132.

PMID: 38770370 PMC: 11105119. DOI: 10.1016/bs.ant.2024.02.001.


Ferroptosis: a potential bridge linking gut microbiota and chronic kidney disease.

Mao Z, Gao Z, Pan S, Liu D, Liu Z, Wu P Cell Death Discov. 2024; 10(1):234.

PMID: 38750055 PMC: 11096411. DOI: 10.1038/s41420-024-02000-8.


References
1.
Chen X, Li J, Kang R, Klionsky D, Tang D . Ferroptosis: machinery and regulation. Autophagy. 2020; 17(9):2054-2081. PMC: 8496712. DOI: 10.1080/15548627.2020.1810918. View

2.
Anderson G, Frazer D . Hepatic iron metabolism. Semin Liver Dis. 2005; 25(4):420-32. DOI: 10.1055/s-2005-923314. View

3.
Gerner R, Nuccio S, Raffatellu M . Iron at the host-microbe interface. Mol Aspects Med. 2020; 75:100895. PMC: 7554189. DOI: 10.1016/j.mam.2020.100895. View

4.
Lambert L, Mitchell S . Molecular evolution of the transferrin receptor/glutamate carboxypeptidase II family. J Mol Evol. 2006; 64(1):113-28. DOI: 10.1007/s00239-006-0137-4. View

5.
Garenaux A, Caza M, Dozois C . The Ins and Outs of siderophore mediated iron uptake by extra-intestinal pathogenic Escherichia coli. Vet Microbiol. 2011; 153(1-2):89-98. DOI: 10.1016/j.vetmic.2011.05.023. View