6.
Yang Y, Shi S, Zhu C, Chen X, Hao Y, Yan L
. Immobilization of chromium in real tannery sludge via heat treatment with coal fly ash. Chemosphere. 2023; 335:139180.
DOI: 10.1016/j.chemosphere.2023.139180.
View
7.
Shi Y, Li Y, Yuan X, Fu J, Ma Q, Wang Q
. Environmental and human health risk evaluation of heavy metals in ceramsites from municipal solid waste incineration fly ash. Environ Geochem Health. 2020; 42(11):3779-3794.
DOI: 10.1007/s10653-020-00639-7.
View
8.
Chen P, Zheng H, Xu H, Gao Y, Ding X, Ma M
. Microbial induced solidification and stabilization of municipal solid waste incineration fly ash with high alkalinity and heavy metal toxicity. PLoS One. 2019; 14(10):e0223900.
PMC: 6797113.
DOI: 10.1371/journal.pone.0223900.
View
9.
Wang X, Jin Y, Wang Z, Nie Y, Huang Q, Wang Q
. Development of lightweight aggregate from dry sewage sludge and coal ash. Waste Manag. 2008; 29(4):1330-5.
DOI: 10.1016/j.wasman.2008.09.006.
View
10.
Han S, Song Y, Ju T, Meng Y, Meng F, Song M
. Recycling municipal solid waste incineration fly ash in super-lightweight aggregates by sintering with clay and using SiC as bloating agent. Chemosphere. 2022; 307(Pt 2):135895.
DOI: 10.1016/j.chemosphere.2022.135895.
View
11.
Wong G, Gan M, Fan X, Ji Z, Chen X, Wang Z
. Co-disposal of municipal solid waste incineration fly ash and bottom slag: A novel method of low temperature melting treatment. J Hazard Mater. 2020; 408:124438.
DOI: 10.1016/j.jhazmat.2020.124438.
View
12.
Phua Z, Giannis A, Dong Z, Lisak G, Ng W
. Characteristics of incineration ash for sustainable treatment and reutilization. Environ Sci Pollut Res Int. 2019; 26(17):16974-16997.
DOI: 10.1007/s11356-019-05217-8.
View
13.
Zhao X, Yang J, Ning N, Yang Z
. Chemical stabilization of heavy metals in municipal solid waste incineration fly ash: a review. Environ Sci Pollut Res Int. 2022; 29(27):40384-40402.
DOI: 10.1007/s11356-022-19649-2.
View
14.
Wang F, Lu X, Shih K, Liu C
. Influence of calcium hydroxide on the fate of perfluorooctanesulfonate under thermal conditions. J Hazard Mater. 2011; 192(3):1067-71.
DOI: 10.1016/j.jhazmat.2011.06.009.
View
15.
Huang S, Chang F, Lo S, Lee M, Wang C, Lin J
. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. J Hazard Mater. 2006; 144(1-2):52-8.
DOI: 10.1016/j.jhazmat.2006.09.094.
View
16.
Liu S, Zhao S, Liang Z, Wang F, Sun F, Chen D
. Perfluoroalkyl substances (PFASs) in leachate, fly ash, and bottom ash from waste incineration plants: Implications for the environmental release of PFAS. Sci Total Environ. 2021; 795:148468.
DOI: 10.1016/j.scitotenv.2021.148468.
View
17.
Huang T, Liu L, Zhou L, Yang K
. Operating optimization for the heavy metal removal from the municipal solid waste incineration fly ashes in the three-dimensional electrokinetics. Chemosphere. 2018; 204:294-302.
DOI: 10.1016/j.chemosphere.2018.04.065.
View
18.
Zhang Z, Huang Y, Zhu Z, Yu M, Gu L, Wang X
. Effect of CaO and montmorillonite additive on heavy metals behavior and environmental risk during sludge combustion. Environ Pollut. 2022; 312:120024.
DOI: 10.1016/j.envpol.2022.120024.
View
19.
Wang X, Jin Y, Wang Z, Mahar R, Nie Y
. A research on sintering characteristics and mechanisms of dried sewage sludge. J Hazard Mater. 2008; 160(2-3):489-94.
DOI: 10.1016/j.jhazmat.2008.03.054.
View
20.
Atanes E, Cuesta-Garcia B, Nieto-Marquez A, Fernandez-Martinez F
. A mixed separation-immobilization method for soluble salts removal and stabilization of heavy metals in municipal solid waste incineration fly ash. J Environ Manage. 2019; 240:359-367.
DOI: 10.1016/j.jenvman.2019.03.122.
View